分析 (1)直接證明△AME≌△MNC即可.
(2)延長(zhǎng)BA到E使得AE=CM,證明△AME≌△MNC即可.
解答 (1)證明:∵四邊形ABCD是正方形,
∴BA=BC,∠ABC=∠BCD=∠DCB=90°,
∵AE=CM,
∴BE=BM,
∴∠BEM=∠BME=45°,
∴∠AEM=180°-∠BEM=135°,
∵AM⊥MN,
∴∠AMN=90°,
∵∠EAM+∠AMB=90°,∠AMB+∠NMC=90°,
∴∠EAM=∠NMC,
∵CN平分∠DCP,
∴∠NCP=$\frac{1}{2}$∠DCP=45°,
∴∠NMC=180°-∠NCP=135°,
∴∠AEM=∠NCM,
在△AME和△MNC中,
$\left\{\begin{array}{l}{∠EAM=∠NMC}\\{AE=CM}\\{∠AEM=∠NCM}\end{array}\right.$,
∴△AME≌△MNC,
∴AM=MN.
(2)在圖2中,延長(zhǎng)BA到E使得AE=CM,連接EM.
∵AB=BC,AE=CM,∠B=90°,
∴BE=BM,∠E=∠BME=45°,
∵∠BAM+∠AMB=90°,∠AMB+∠NMP=90°,
∴∠BAM=∠NMP,
∴∠EAM=∠NMC,
∵∠AEM=∠NCM=45°,
在△AME和△MNC中,
$\left\{\begin{array}{l}{∠EAM=∠NMC}\\{AE=CM}\\{∠AEM=∠NCM}\end{array}\right.$,
∴△AME≌△MNC,
∴AM=MN.
點(diǎn)評(píng) 本題考查正方形、全等三角形的判定,證明線段相等轉(zhuǎn)化為證明三角形全等是常用的方法,關(guān)鍵是學(xué)會(huì)輔助線的添加.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x+2y=3xy | B. | 3xy2-3y2x=0 | C. | 4x2-2x2=2 | D. | y2+y2=2y4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com