【題目】如圖,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),點(diǎn)EBC的延長(zhǎng)線上,且PE=PB,PEDC交于點(diǎn)O

(基礎(chǔ)探究)

1)求證:PD=PE

2)求證:∠DPE=90°

3)(應(yīng)用拓展)把正方形ABCD改為菱形,其他條件不變(如圖),若PE=3,則PD=________;

∠ABC=62°,則∠DPE=________.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3,.

【解析】

1)由正方形的性質(zhì)可得DC=BC,∠ACB=∠ACD,利用SAS證明△PBC≌△PDC,根據(jù)全等三角形的性質(zhì)可得PD=PB,又因PE=PB,即可證得PD=PE;(2)類(lèi)比(1)的方法證明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根據(jù)等腰三角形的性質(zhì)可得∠PBC=∠E,所以∠PDC=∠E.因?yàn)?/span>∠POD=∠COE,根據(jù)三角形的內(nèi)角和定理可得∠DPO=∠OCE=90;(3)類(lèi)比(1)的方法證得PD=PE=3;類(lèi)比(2)的方法證得∠DPE=∠DCE,由平行線的性質(zhì)可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.

1)證明:在正方形ABCD中,DC=BC,∠ACB=∠ACD

△PBC△PDC中,

∵DC=BC,∠ACB=∠ACD(已證),CP=CP(公共邊),

∴△PBC≌△PDC.

∴PD=PB.

∵PE=PB,

∴PD=PE;

2)證明:在正方形ABCD中,DC=BC,∠ACB=∠ACD

△PBC△PDC中,

∵DC=BC∠ACB=∠ACD(已證),,CP=CP(公共邊)

∴△PBC≌△PDC.

∴∠PDC=∠PBC.

∵PE=PB,∴∠PBC=∠E.

∴∠PDC=∠E.

∵∠POD=∠COE,

∴∠DPO=∠OCE=90;

3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,

△PBC△PDC中,

∵DC=BC,∠ACB=∠ACD(已證),,CP=CP(公共邊)

∴△PBC≌△PDC.

∴∠PDC=∠PBC,PD=PB.

∵PE=PB,

∴∠PBC=∠E, PD=PE=3.

∴∠PDC=∠E.

∵∠POD=∠COE,

∴∠DPE=∠DCE;

ABCD,∠ABC=62°,

∠ABC=∠DCE=62°,

∠DPE=62°.

故答案為:362°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4cm,BC=6cm,∠B=60°,GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn)(E不與A、D重合),且點(diǎn)EAD運(yùn)動(dòng),速度為1cm/sEG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連接CE、DF,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為

(1)求證:無(wú)論為何值,四邊形CEDF都是平行四邊形;

(2)①當(dāng)s時(shí),CEAD

②當(dāng)時(shí),平行四邊形CEDF的兩條鄰邊相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了滿足市場(chǎng)需求,某廠家生產(chǎn)AB兩種款式的環(huán)保購(gòu)物袋,每天共生產(chǎn)5000個(gè),兩種購(gòu)物袋的成本和售價(jià)如下表:

成本(元/個(gè))

售價(jià) (元/個(gè))

2

2.4

3

3.6

設(shè)每天生產(chǎn)A種購(gòu)物袋x個(gè),每天共獲利y.

1)求yx的函數(shù)解析式;

2)如果該廠每天最多投入成本12000元,那么每天最多獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,以AC為底邊作等腰ACD,且使ABC=2CAD,連接BD.

(1)如圖1,若ADC=90°BAC=30°,BC=1,求CD的長(zhǎng);

(2)如圖1,若ADC=90°,證明:AB+BC=BD;

(3)如圖2,若ADC=60°,探究AB,BC,BD之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程式應(yīng)用題.

天河食品公司收購(gòu)了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術(shù),一種是加工為普通柿餅,另一種是加工為特級(jí)霜降柿餅,也可以不需加工直接銷(xiāo)售.相關(guān)信息見(jiàn)表:

品種

每天可加工數(shù)量(噸)

每噸獲利(元)

新鮮柿子

不需加工

1000

普通柿餅

16

5000

特級(jí)霜降柿餅

8

8000

由于生產(chǎn)條件的限制,兩種加工方式不能同時(shí)進(jìn)行,為此公司研制了兩種可行方案:

方案1:盡可能多地生產(chǎn)為特級(jí)霜降柿餅,沒(méi)來(lái)得及加工的新鮮柿子,在市場(chǎng)上直接銷(xiāo)售;

方案2:先將部分新鮮柿子加工為特級(jí)霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.

請(qǐng)問(wèn):哪種方案獲利更多?獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn)A(x1,y1)B (x2,y2),規(guī)定運(yùn)算:

(1)A⊕B=(x1+x2,y1+y2);

(2)A⊙B=x1x2+y1y2;

(3)當(dāng)x1=x2且y1=y2時(shí),A=B.

有下列四個(gè)命題:

①若有A(1,2),B(2,﹣1),則A⊕B=(3,1),A⊙B=0;

②若有A⊕B=B⊕C,則A=C;

③若有A⊙B=B⊙C,則A=C;

④(A⊕B)⊕C=A⊕(B⊕C)對(duì)任意點(diǎn)A、B、C均成立.

其中正確的命題為______(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M△ABC的邊BC的中點(diǎn),AN平分∠BAC,BN⊥AN于點(diǎn)N,延長(zhǎng)BNAC于點(diǎn)D,已知AB=10,BC=15,MN=3

1)求證:BN=DN;

2)求△ABC的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是矩形ABCD的一條對(duì)角線.

(1)BD的垂直平分線EF,分別交AD,BC于點(diǎn)E,F,垂足為點(diǎn)O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】恰逢“植樹(shù)節(jié)”,師梅與博小兩所學(xué)校決定購(gòu)進(jìn)A,B兩種樹(shù)苗進(jìn)行種植,已知兩所學(xué)校共花費(fèi)了390元購(gòu)進(jìn)了50棵樹(shù)苗,其中A樹(shù)苗10元一棵,B樹(shù)苗5元一棵.現(xiàn)在要將50棵樹(shù)苗運(yùn)往兩所學(xué)校,其運(yùn)費(fèi)如下表所示:

樹(shù)苗類(lèi)型

師梅(元/棵)

博。ㄔ/棵)

A

8

10

B

6

5

1)求這50棵樹(shù)苗中A、B樹(shù)苗各多少棵?

2)現(xiàn)師梅需要30棵樹(shù)苗,博小需要20棵樹(shù)苗,設(shè)師梅需要A樹(shù)苗為x棵,運(yùn)往師梅和博小的總運(yùn)費(fèi)為y,求yx的函數(shù)解析式.

3)在(2)的條件下,若運(yùn)往師梅的運(yùn)費(fèi)不超過(guò)200元,請(qǐng)你寫(xiě)出使總運(yùn)費(fèi)最少的樹(shù)苗分配方案,并求出最少費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案