【題目】如圖,在△ABC中,ACBC,AD為∠BAC的平分線,DEAB,AC=3cm,BC=5cm,則三角形BDE的周長是_________________

【答案】2+(cm)

【解析】

根據(jù)角平分線的性質(zhì)可得DC=DE,易證RtACDRtAED,得到AC=AE,利用勾股定理求出AB,然后根據(jù)三角形BDE的周長=BD+DE+BEBC+( AB-AC)計算即可.

解:∵AD為∠BAC的平分線,ACBC,DEAB,

DC=DE,

∵∠ACD=AED=90°,AD=AD

RtACDRtAEDHL),

AC=AE,

AC=3cm,BC=5cm,

AB=cm,

∴三角形BDE的周長=BD+DE+BEBD+DC+(AB-AE) BC+( AB-AC) 2+(cm),

故答案為:2+(cm).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各式的值:

1)(+

2)(32||+

(3)x2﹣121=0;

(4)(x﹣5)3+8=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于正整數(shù),定義,其中表示的首位數(shù)字、末位數(shù)字的平方和.例如:,.規(guī)定,為正整數(shù)),例如,,.按此定義,則由_____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB90°,OC是一條可以繞點O轉(zhuǎn)動的射線,ON平分∠AOCOM平分∠BOC

1)當射線OC轉(zhuǎn)動到∠AOB的內(nèi)部時,如圖(1),求∠MON得度數(shù).

2)當射線OC轉(zhuǎn)動到∠AOB的外時(90°<∠BOC<∠180°),如圖2,∠MON的大小是否發(fā)生變化,變或者不變均說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過BBECD,垂足為點E,連接AE,FAE上一點,且∠BFE=C

1)求證:ABF∽△EAD;

2)若AB=4BAE=30°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD,E.F分別是兩組對邊延長線的交點,EG.FG分別平分.,,,的大小是_________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算張老師在黑板上寫了三個算式,希望同學們認真觀察,發(fā)現(xiàn)規(guī)律

請你結合這些算式,解答下列問題:

(1)請你再寫出另外兩個符合上述規(guī)律的算式;

(2)驗證規(guī)律:設兩個連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

(3)拓展延伸:兩個連續(xù)偶數(shù)的平方差是8的倍數(shù),這個結論正確嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列判定中,正確的個數(shù)有( )

①一組對邊平行,一組對邊相等的四邊形是平行四邊形;

②對角線互相平分且相等的四邊形是矩形;

③對角線互相垂直的四邊形是菱形;

④對角線互相垂直平分且相等的四邊形是正方形,

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案