【題目】計(jì)算張老師在黑板上寫了三個(gè)算式,希望同學(xué)們認(rèn)真觀察,發(fā)現(xiàn)規(guī)律

請(qǐng)你結(jié)合這些算式,解答下列問(wèn)題:

(1)請(qǐng)你再寫出另外兩個(gè)符合上述規(guī)律的算式;

(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

(3)拓展延伸:兩個(gè)連續(xù)偶數(shù)的平方差是8的倍數(shù),這個(gè)結(jié)論正確嗎?請(qǐng)說(shuō)明理由

【答案】(1);(2)兩個(gè)連續(xù)奇數(shù)的平方差是8的倍數(shù)(3)不正確

【解析】試題分析:觀察所給式子,找出規(guī)律.

根據(jù)平方差公式,化簡(jiǎn)即可.

舉例說(shuō)明或者參照進(jìn)行運(yùn)算即可.

試題解析:觀察所給式子:找出規(guī)律:

(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n-1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

,

故兩個(gè)連續(xù)奇數(shù)的平方差是8的倍數(shù).

(3)不正確,

解法一:舉反例:

因?yàn)?/span>12不是8的倍數(shù),故這個(gè)結(jié)論不正確,

解法二:設(shè)這兩個(gè)偶數(shù)位2n2n+2,

因?yàn)?/span>8n+4不是8的倍數(shù),故這個(gè)結(jié)論不正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知DE分別為邊BC,AD的中點(diǎn),且SABC=4 cm2,則△BEC的面積為(  )

A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在昆明市軌道交通的修建中,規(guī)劃在A、B兩地修建一段地鐵,點(diǎn)B在點(diǎn)A的正東方向,由于A、B之間建筑物較多,無(wú)法直接測(cè)量,現(xiàn)測(cè)得古樹C在點(diǎn)A的北偏東45°方向上,在點(diǎn)B的北偏西60°方向上,BC=400m,請(qǐng)你求出這段地鐵AB的長(zhǎng)度.(結(jié)果精確到1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACBC,AD為∠BAC的平分線,DEAB,AC=3cm,BC=5cm,則三角形BDE的周長(zhǎng)是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里裝有2個(gè)紅球1個(gè)黃球,這3個(gè)小球除顏色不同外,其它都相同,貝貝同學(xué)摸出一個(gè)球后放回口袋再摸一個(gè);瑩瑩同學(xué)一次摸2個(gè)球,兩人分別記錄下小球的顏色,關(guān)于兩人摸到1個(gè)紅球1個(gè)黃球和2個(gè)紅球的概率的描述中,正確的是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,且,與相交于點(diǎn),點(diǎn)邊的中點(diǎn),連接.

1)求證:

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小梅將邊長(zhǎng)分別為,,,,長(zhǎng)的若干個(gè)正方形按一定規(guī)律拼成不同的長(zhǎng)方形,如圖所示.

求第四個(gè)長(zhǎng)方形的周長(zhǎng);

當(dāng)時(shí),求第五個(gè)長(zhǎng)方形的面積.(用科學(xué)記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《幾何原本》中記載著這樣的題目:如果同一條線段被兩個(gè)分點(diǎn)先后分成相等和不相等的線段,以得到的各線段為邊作正方形,那么不相等的兩個(gè)正方形的面積之和等于原線段一半上的正方形與兩個(gè)分點(diǎn)之間一段上正方形的面積之和的兩倍.王老師帶領(lǐng)學(xué)生在閱讀的基礎(chǔ)上畫出的部分圖形如圖,已知線段,點(diǎn)為線段的中點(diǎn),點(diǎn)為線段上任意一點(diǎn)(不與重合),分別以為邊在的下方作正方形和正方形,以為邊在線段下方作正方形和正方形,則正方形與正方形的面積之和等于正方形和正方形面積之和的兩倍.

1)請(qǐng)你畫出正方形和正方形(不必尺規(guī)作圖);

2)設(shè),,根據(jù)題意寫出關(guān)于的等式并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案