【題目】如圖射線OPx軸正半軸的夾角為30°,AOP上一點過點Ax軸的垂線與x軸交于點E.△AOE繞著點O逆時針旋轉(zhuǎn)90°后能與△BOC重合,△BOC沿著y軸翻折能與△DOC重合,若點D恰好在拋物線yx2x>0),則點A的坐標(biāo)是_____

【答案】3,

【解析】

設(shè)AEt,利用含30度的直角三角形三邊的關(guān)系別說出OE得到At,t),再利用旋轉(zhuǎn)的性質(zhì)得到B(﹣t t),接著利用關(guān)于y軸對稱點的坐標(biāo)特征得到Dt, t),然后把Dt t)代入yx2t2t,最后解方程求出t即可得到點A的坐標(biāo).

設(shè)AEt,

RtAOE中,∵∠AOE=30°,

OEAEt,

At,t),

∵△AOE繞著點O逆時針旋轉(zhuǎn)90°后能與BOC重合,

BCAEtOCOEt,

B(﹣t, t),

∵△BOC沿著y軸翻折能與DOC重合

Dt, t),

Dt, t)代入yx2t2t,解得t1=0(舍去),t2,

∴點A的坐標(biāo)為(3,).

故答案是:(3,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:相似三角形面積的比等于相似比的平方.(請根據(jù)題意畫出圖形,寫出已知,求證并證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+1與兩坐標(biāo)軸分別交于A,B兩點,將線段OA分成n等份,分點分別為P1,P2,P3,…,Pn1,過每個分點作x軸的垂線分別交直線AB于點T1T2,T3,…,Tn1,用S1S2,S3,…,Sn1分別表示RtT1OP1RtT2P1P2,…,RtTn1Pn2Pn1的面積,則S1+S2+S3+…+Sn1=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:如果一個多邊形的各個頂點均在另一個多邊形的邊上,則稱這個多邊形為另一多邊形的內(nèi)接多邊形

問題探究:

(1)如圖1,正方形PEFG的頂點E、F在等邊三角形ABC的邊AB上,頂點PAC邊上.請在等邊三角形ABC內(nèi)部,以A為位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面積最大(不寫作法)

(2)如圖2,在邊長為4正方形ABCD中,畫出一個面積最大的內(nèi)接正三角形,并求此最大內(nèi)接正三角形的面積

拓展應(yīng)用:

(3)如圖3,在邊長為4的正方形ABCD中,能不能截下一個面積最大的直角三角形,并使其三邊比為3:4:5,若能,請求出此直角三角形的最大面積,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點.

(1)求證:AB是⊙O的直徑;

(2)判斷DE與⊙O的位置關(guān)系,并加以證明;

(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為D的拋物線y=﹣x2+x+4y軸交于點A,與x軸交于兩點B、C(點B在點C的左邊),點A與點E關(guān)于拋物線的對稱軸對稱,點B、E在直線y=kx+b(k,b為常數(shù))上.

(1)k,b的值;

(2)P為直線AE上方拋物線上的任意一點,過點PAE的垂線交AE于點F,點Gy軸上任意一點,當(dāng)△PBE的面積最大時,求PF+FG+OG的最小值;

(3)(2)中,當(dāng)PF+FG+OG取得最小值時,將△AFG繞點A按順時方向旋轉(zhuǎn)30°后得到△AF1G1,過點G1AE的垂線與AE交于點M.點D向上平移個單位長度后能與點N重合,點Q為直線DN上任意一點,在平面直角坐標(biāo)系中是否存在一點S,使以S、Q、M、N為頂點且MN為邊的四邊形為菱形?若存在,直接寫出點S的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC、EF是⊙O的弦,且EF垂直AB于點G,交BC于點H,CDFE延長線交于D點,CDDH

(1)求證:CD是⊙O的切線;

(2)若HBC中點,AB=10,EF=8,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;

(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與坐標(biāo)軸相交于A,B兩點,與反比例函數(shù)y=在第一象限交點C(1,a).求:

(1)反比例函數(shù)的解析式;

(2)AOC的面積;

(3)不等式x+2﹣<0的解集(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案