精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,∠BAC=45°,原題設其它條件不變.求證:△AEF≌△BCF.

【答案】
(1)證明:∵AB=AC,D是BC的中點,

∴∠BAE=∠EAC,

在△ABE和△ACE中, ,

∴△ABE≌△ACE(SAS),

∴BE=CE;


(2)證明:∵∠BAC=45°,BF⊥AF,

∴△ABF為等腰直角三角形,

∴AF=BF,

∵AB=AC,點D是BC的中點,

∴AD⊥BC,

∴∠EAF+∠C=90°,

∵BF⊥AC,

∴∠CBF+∠C=90°,

∴∠EAF=∠CBF,

在△AEF和△BCF中, ,

∴△AEF≌△BCF(ASA)


【解析】(1)根據等腰三角形三線合一的性質可得∠BAE=∠EAC,然后利用“邊角邊”證明△ABE和△ACE全等,再根據全等三角形對應邊相等證明即可;(2)先判定△ABF為等腰直角三角形,再根據等腰直角三角形的兩直角邊相等可得AF=BF,再根據同角的余角相等求出∠EAF=∠CBF,然后利用“角邊角”證明△AEF和△BCF全等即可.
【考點精析】本題主要考查了等腰三角形的性質的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點D,E在△ABC的邊BC上,連接AD,AE.下面有三個等式:①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設,另一個作為命題的結論,相構成以下三個命題:命題Ⅰ“如果①②成立,那么③成立”; 命題Ⅱ“如果①③成立,那么②成立”;命題Ⅲ“如果②③成立,那么①成立”.
(1)以上三個命題是真命題的為(直接作答);
(2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某種商品原售價200元,由于產品換代,現(xiàn)連續(xù)兩次降價處理,按72元的售價銷售.已知兩次降價的百分率相同,若設降價的百分率為x,則可列出方程為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算(-18)÷9的值是( )

A.-9B.-27C.-2D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F

(1)求ABE的大小及的長度;

(2)在BE的延長線上取一點G,使得上的一個動點P到點G的最短距離為,求BG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列兩個變量x、y不是反比例的關系是(  )
A.書的單價為12元,售價y(元)與書的本數x(本)
B.xy=7
C.當k=﹣1時,式子中的y與x
D.小亮上學用的時間x(分鐘)與速度y(米/分鐘)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過點C作⊙O的切線交BA的延長線于點P,連接BC.

(1)求證:∠PCA=∠B;

(2)已知∠P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當△ABQ與△ABC的面積相等時,求動點Q所經過的弧長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,函數y=﹣2x+3與y=﹣ x+m的圖象交于P(n,﹣2).

(1)求出m、n的值;
(2)求出△ABP的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】P2m﹣4,3 )在第二象限,則m的取值范圍是( 。

A. m2 B. m2 C. m≥﹣2 D. m≤2

查看答案和解析>>

同步練習冊答案