【題目】某超市銷售一種水果,迸價為每箱40元,規(guī)定售價不低于進(jìn)價.現(xiàn)在的售價為每箱72元,每月可銷售60箱.經(jīng)市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降低2元,則每月的銷量將增加10箱,設(shè)每箱水果降價x元(x為偶數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍.
(2)若該超市在銷售過程中每月需支出其他費用500元,則如何定價才能使每月銷售水果的利潤最大?最大利潤是多少元?
【答案】(1)y=60+5x,(0≤x≤32,且x為偶數(shù));(2)售價為62元時,每月銷售水果的利潤最大,最大利潤是1920元.
【解析】
(1)根據(jù)價格每降低2元,平均每月多銷售10箱,由每箱降價元,多賣,據(jù)此可以列出函數(shù)關(guān)系式;
(2)由利潤=(售價成本)×銷售量每月其他支出列出函數(shù)關(guān)系式,求出最大值.
解:(1)根據(jù)題意知y=60+5x,(0≤x≤32,且x為偶數(shù));
(2)設(shè)每月銷售水果的利潤為w,
則w=(72﹣x﹣40)(5x+60)﹣500
=﹣5x2+100x+1420
=﹣5(x﹣10)2+1920,
當(dāng)x=10時,w取得最大值,最大值為1920元,
答:當(dāng)售價為62元時,每月銷售水果的利潤最大,最大利潤是1920元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A是⊙O上一點,P是⊙O外一點,AP的垂直平分線與⊙O相切于點C,交AP于B點.
⑴ 如圖1,若PA是⊙O的切線,求的值;
⑵ 如圖2,若PA與⊙O相交,OA=4,OP=10,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江都區(qū)教育行政部門為了了解八年級學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機調(diào)查了部分學(xué)生,并將他們一學(xué)期參加綜合實踐活動的天數(shù)進(jìn)行統(tǒng)計,繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a=____ ___,參加調(diào)查的八年級學(xué)生人數(shù)為___ __人;
(2)根據(jù)圖中信息,補全條形統(tǒng)計圖;扇形統(tǒng)計圖中“活動時間為4天”的扇形所對應(yīng)的圓心角的度數(shù)為____ ___;
(3)如果全市共有八年級學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,點從點出發(fā)以的速度沿向點勻速移動,點從點出發(fā)以的速度沿向點勻速移動,點從點出發(fā)以的速度沿向點勻速移動.點同時出發(fā),當(dāng)其中一個點到達(dá)終點時,其他兩個點也隨之停止運動,設(shè)移動時間為.
(1)如圖①,
①當(dāng)為何值時,點為頂點的三角形與全等?并求出相應(yīng)的的值;
②連接交于點,當(dāng)時,求出的值;
(2)如圖②,連接交于點.當(dāng)時,證明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折(折扣相同),其余兩次均按標(biāo)價購買.三次購買商品A、B的數(shù)量和費用如下表:
購買商品A的數(shù)量/個 | 購買商品B的數(shù)量/個 | 購買總費用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第 次購物;
(2)求出商品A、B的標(biāo)價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com