【題目】如圖,已知點(diǎn)D、F、E、G都在ABC的邊上,EFAD1=2,BAC=70°,求∠AGD的度數(shù).(請(qǐng)?jiān)谙旅娴目崭裉幪顚?xiě)理由或數(shù)學(xué)式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))

   ,(已知)

∴∠AGD=   (等式性質(zhì))

【答案】見(jiàn)解析

【解析】試題分析:首先根據(jù)EF∥AD可得∠2=∠3,進(jìn)而得到∠1=∠3,可判斷出DG∥AB,然后根據(jù)兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)可得∠DGA+∠BAC=180°,進(jìn)而得到答案.

試題解析:∵EFAD,(已知)

∴∠2=3(兩直線(xiàn)平行同位角相等)

∵∠1=2,(已知)

∴∠1=3(等量代換)

DGBA,(內(nèi)錯(cuò)角相等兩直線(xiàn)平行)

∴∠AGD+CAB=180°,(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))

∵∠CAB=70°,(已知)

∴∠AGD=110°(等式性質(zhì)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊直角三角形的綠地,量得兩直角邊長(zhǎng)分別為6 m,8 m,現(xiàn)在要將綠地?cái)U(kuò)充成等腰三角形,且擴(kuò)充部分是以8 m為直角邊的直角三角形,求擴(kuò)充后等腰三角形綠地的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有5個(gè)邊長(zhǎng)為1的小正方形組成的紙片,可以把它剪拼成一個(gè)正方形.

(1) 拼成的正方形的面積是 邊長(zhǎng)是 ;

(2) 在數(shù)軸上作出表示-2的點(diǎn);

(3) 你能把這十個(gè)小正方形組成的圖形紙,剪開(kāi)并拼成一個(gè)大正方形嗎?若能,在圖中畫(huà)出拼接后的正方形,并求邊長(zhǎng),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知: 平分 垂直平分, ,垂足分別是點(diǎn).求證(1) ;(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,BC>AC,以斜邊AB 所在直線(xiàn)為x,以斜邊AB上的高所在直線(xiàn)為y,建立直角坐標(biāo)系,OA2+OB2= 17, 且線(xiàn)段OA、OB的長(zhǎng)度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.

(1)C點(diǎn)的坐標(biāo);

(2)以斜邊AB為直徑作圓與y軸交于另一點(diǎn)E,求過(guò)A、B、E 三點(diǎn)的拋物線(xiàn)的關(guān)系式,并畫(huà)出此拋物線(xiàn)的草圖.

(3)在拋物線(xiàn)上是否存在點(diǎn)P,使ABPABC全等?若存在,求出符合條件的P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用我們學(xué)過(guò)的知識(shí)可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式

a2b2c2abbcac [(ab)2(bc)2(ca)2],

該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱(chēng)性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美

(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性;

(2)a2 016b2 017,c2 018你能很快求出a2b2c2abbcac的值嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABCRtABD中,∠ABC=BAD=90°,AD=BCAC,BD相交于點(diǎn)G,過(guò)點(diǎn)AAEDBCB的延長(zhǎng)線(xiàn)于點(diǎn)E,過(guò)點(diǎn)BBFCADA的延長(zhǎng)線(xiàn)于點(diǎn)F,AEBF相交于點(diǎn)H

1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線(xiàn))

2)證明:四邊形AHBG是菱形;

3)若使四邊形AHBG是正方形,還需在RtABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫(xiě)出這個(gè)條件.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OAC相切于點(diǎn)A,且AB=AC,BC與⊙O相交于點(diǎn)D,下列說(shuō)法不正確的是().

A. C = 45° B. CD=BD C. BAD=DAC D. CD=AB

查看答案和解析>>

同步練習(xí)冊(cè)答案