【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P (x,y),若點(diǎn)Q的坐標(biāo)為(ax+y,x+ay), 其中a為常數(shù),則稱點(diǎn)Q是點(diǎn)P的“a級(jí)關(guān)聯(lián)點(diǎn)",例如,點(diǎn)P(1,4)的“3級(jí)關(guān)聯(lián)點(diǎn)"為Q (3×1+4,1+3×4), 即Q (7,13)。
(1)已知點(diǎn)A (-2,6)的“級(jí)關(guān)聯(lián)點(diǎn)”是點(diǎn)A1,點(diǎn)B的“2級(jí)關(guān)聯(lián)點(diǎn)”是B1 (3, 3), 求點(diǎn)A1和點(diǎn)B的坐標(biāo):
(2)已知點(diǎn)M (m-1, 2m)的“-3級(jí)關(guān)聯(lián)點(diǎn)"M位于坐標(biāo)軸上,求M的坐標(biāo)
【答案】(1)A1 (5, 1),;(2) (,0)或 (0,-16).
【解析】
(1)根據(jù)關(guān)聯(lián)點(diǎn)的定義,結(jié)合點(diǎn)的坐標(biāo)即可得出結(jié)論;
(2)先表示出點(diǎn)M(m-1,2m)的“-3級(jí)關(guān)聯(lián)點(diǎn)”M′,然后分兩種情況求解即可求出M′的坐標(biāo).
(1) ∵點(diǎn)A(-2, 6)的“級(jí)關(guān)聯(lián)點(diǎn)”是點(diǎn)A,
∴A (,), 即A1 (5, 1).
設(shè)點(diǎn)B(x, y),
∵點(diǎn)B的“2級(jí)關(guān)聯(lián)點(diǎn)"是B (3, 3),
∴,
解得,即,
(2) ∵點(diǎn)M(m-1, 2m) 的“- 3級(jí)關(guān)聯(lián)點(diǎn)”為M (-3 (m-1) +2m, m-1+ (-3) ×2m),即 (-m+3, -5m-1),
當(dāng)位于x軸上,.m-1-6m= =0解得:,
∴-3 (m-1) +2m= ,
,
當(dāng)位于y軸上,∴.-3 (m-1) +2m=0,解得: m=3,
∴,.
綜上所述,點(diǎn)坐標(biāo)是 (,0)或 (0,-16).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC與CD的長度之和為34cm,其中C是直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)你探究當(dāng)C離點(diǎn)B有多遠(yuǎn)時(shí),△ACD是以DC為斜邊的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,有兩定點(diǎn)、,是反比例函數(shù)圖象上動(dòng)點(diǎn),當(dāng)為直角三角形時(shí),點(diǎn)坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長MP交CN于點(diǎn)E(如圖②).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖③的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-3與直線y=kx(k≠0)相交于點(diǎn)A和點(diǎn)B,則一元二次方程x2-kx-3=0的解的情況是( )
A. 有兩個(gè)不相等的正實(shí)根 B. 有兩個(gè)不相等的負(fù)實(shí)根
C. 一個(gè)正實(shí)根、一個(gè)負(fù)實(shí)根 D. 有兩個(gè)相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),在AD右側(cè)作△ADE,使得AD=AE,∠DAE=∠BAC,聯(lián)結(jié)DE,CE。
(1)當(dāng)點(diǎn)D在BC邊上時(shí),求證:EC=DB;
(2)當(dāng)EC∥AB,若△ABD的最小角為20°,請(qǐng)寫出ADB的度數(shù),并對(duì)其中一個(gè)答案加以證明。
答:∠ADB的度數(shù)除了20°,還可能是 (直接寫出所有答案,并對(duì)其中一個(gè)答案加以證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com