【題目】如圖,在平面直角坐標(biāo)系中,,過點(diǎn)軸的垂線,點(diǎn)在線段上,連結(jié)并延長交直線于點(diǎn),過點(diǎn)交直線于點(diǎn).

(1)求的度數(shù),并直接寫出直線的解析式;

(2)若點(diǎn)的橫坐標(biāo)為2,求的長;

3)當(dāng)時,求點(diǎn)的坐標(biāo).

【答案】(1);(2)1;(3)C的坐標(biāo)為(2,1)或(1,2)

【解析】

1)根據(jù)A3,0),B03),得到OA=OB=3,則是等腰直角三角形,即可求出的度數(shù),根據(jù)待定系數(shù)法即可求出直線的解析式;

2)作CFlF,CGy軸于G,根據(jù)點(diǎn)C的橫坐標(biāo)為2,點(diǎn)C上,求出點(diǎn)C21),CG=BF=2,OG=1,證明RtOGCRtEFC,即可求解.

3)分E在點(diǎn)B的右側(cè)和E在點(diǎn)B的左側(cè)兩種情況進(jìn)行討論即可.

1)∵A3,0),B0,3

OA=OB=3

∵∠AOB=90°

∴∠OBA=45°

直線AB的解析式為:

2)作CFlF,CGy軸于G

∴∠OGC=EFC=90°

∵點(diǎn)C的橫坐標(biāo)為2,點(diǎn)C

C2,1),CG=BF=2,OG=1

BC平分∠OBE

CF=CG =2

∵∠OCE=GCF=90°

∴∠OCG=ECF

RtOGCRtEFCASA

EF=OG =1

BE =1

3)設(shè)C的坐標(biāo)為(m-m+3

當(dāng)E在點(diǎn)B的右側(cè)時,由(2)知EF=OG =m-1

m-1=-m+3

m=2

C的坐標(biāo)為(2,1

當(dāng)E在點(diǎn)B的左側(cè)時, 同理可得:m+1=-m+3

m=1

C的坐標(biāo)為(12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了更好地開展球類運(yùn)動,體育組決定用1600元購進(jìn)足球8個和籃球14個,并且籃球的單價比足球的單價多20元,請解答下列問題:

1)求出足球和籃球的單價;

2)若學(xué)校欲用不超過3240元,且不少于3200元再次購進(jìn)兩種球50個,求出有哪幾種購買方案?

3)在(2)的條件下,若已知足球的進(jìn)價為50元,籃球的進(jìn)價為65元,則在第二次購買方案中,哪種方案商家獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OA在x軸上,邊OB在y軸上,點(diǎn)D在邊CB上,反比例函數(shù)y= 在第二象限的圖象經(jīng)過點(diǎn)E,則正方形AOBC和正方形CDEF的面積之差為( )

A.12
B.10
C.8
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個矩形的兩邊長,且k=4,求該矩形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加.某商場從廠家購進(jìn)了A、B兩種型號的空氣凈化器,兩種凈化器的銷售相關(guān)信息見下表:

A型銷售數(shù)量(臺)

B型銷售數(shù)量(臺)

總利潤(元)

5

10

2000

10

5

2500


(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進(jìn)兩種型號的空氣凈化器共100臺,其中B型空氣凈化器的進(jìn)貨量不少于A型空氣凈化器的2倍,為使該公司銷售完這100臺空氣凈化器后的總利潤最大,請你設(shè)計相應(yīng)的進(jìn)貨方案;
(3)已知A型空氣凈化器的凈化能力為300m3/小時,B型空氣凈化器的凈化能力為200m3/小時,某長方體室內(nèi)活動場地的總面積為200m2 , 室內(nèi)墻高3m,該場地負(fù)責(zé)人計劃購買5臺空氣凈化器每天花費(fèi)30分鐘將室內(nèi)就歐諾個氣凈化一新,若不考慮空氣對流等因素,至少要購買A型空氣凈化器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+ 經(jīng)過A(1,0),B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊三角形ABC.

(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是SABM= SABC?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(3)如圖2,E是線段AC上的動點(diǎn),F(xiàn)是線段BC上的動點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動到C時,請直接寫出點(diǎn)P經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解龍崗區(qū)學(xué)生喜歡球類活動的情況,采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖,,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

1)本次共調(diào)查的學(xué)生人數(shù)為___,并把條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中m=___,n=___;

3)表示足球的扇形的圓心角是___度;

4)若龍崗區(qū)初中學(xué)生共有60000人,則喜歡乒乓球的有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,ACB=90°,AC=BC,P是△ABC內(nèi)的一點(diǎn),PA=3,PB=1,CD=PC=2,CDPC.

(1)找出圖中一對全等三角形并證明;

(2)求∠BPC的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案