【題目】當(dāng)﹣2≤x≤1時,二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實數(shù)m的值為(
A.﹣
B. 或﹣
C.2或﹣
D.2或﹣ 或﹣

【答案】C
【解析】解:二次函數(shù)對稱軸為直線x=m, ①m<﹣2時,x=﹣1取得最大值,﹣(﹣1﹣m)2+m2+1=4,
解得m=﹣2,不合題意,舍去;
②﹣2≤m≤1時,x=m取得最大值,m2+1=4,
解得m=± ,
∵m= 不滿足﹣2≤m≤1的范圍,
∴m=﹣ ;
③m>1時,x=1取得最大值,﹣(1﹣m)2+m2+1=4,
解得m=2.
綜上所述,m=2或﹣ 時,二次函數(shù)有最大值4.
故選:C.
【考點精析】本題主要考查了二次函數(shù)的最值的相關(guān)知識點,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點Ax軸的下方,y軸的右側(cè),到x軸的距離是4,到y軸的距離是3,則點A的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在助殘日舉行了一次手拉手、獻愛心的捐款活動,學(xué)校對已捐款學(xué)生人數(shù)及捐款金額情況進行了調(diào)查.圖①表示的是各年級捐款人數(shù)占總捐款人數(shù)的百分比;圖②是學(xué)校對學(xué)生的捐款金額情況進行抽樣調(diào)查并根據(jù)所得數(shù)據(jù)繪制的統(tǒng)計圖

1)學(xué)校對多少名學(xué)生的捐款金額情況進行了抽樣調(diào)查?

2)這組捐款金額數(shù)據(jù)的平均數(shù)、中位數(shù)各是多少?

3)若該校九年級共有400名學(xué)生捐款,估計全校學(xué)生捐款總金額大約多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是(  )

A.同位角相等

B.平行于同一直線的兩條直線互相平行

C.兩個銳角的和是銳角

D.和為180°的兩個角互為鄰補角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:

如圖所示,已知∠1 = ∠2,∠B = ∠C,可推得ABCD,

理由如下:

∵∠1 = ∠2(已知),且∠1 = ∠4_____________________,

∴∠2 = ∠4(等量代換).

CEBF__________________________.

∴∠_____= ∠3________________________

又∵∠B = ∠C(已知),

∴∠3= ∠B(等量代換),

ABCD_____________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,AC是對角線,過點BBG∥ACDA的延長線于點G.

(1)求證:CE∥AF;

(2)若∠G=90°,求證:四邊形CEAF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫坐標(biāo)分別為整數(shù)的點,其順序按HUI圖中“→”方向排列,如(1,0),(20),(2,1),(1,1),(12),(2,2)…根據(jù)這個規(guī)律,第2018個點的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)請寫出△ABC各點的坐標(biāo)

(2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出 A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形

(3)求出三角形ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形MNPQ中,動點R從點N出發(fā),沿著N→P→Q→M方向運動至點M處停止,設(shè)點R運動的路程為x,MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則下列說法不正確的是(

A.當(dāng)x=2時,y=5

B.矩形MNPQ的面積是20

C.當(dāng)x=6時,y=10

D.當(dāng)y=時,x=10

查看答案和解析>>

同步練習(xí)冊答案