如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(﹣3,0)、B(﹣1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx﹣4k(k≠0)的圖象過點(diǎn)P交x軸于點(diǎn)Q.
(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(﹣4,m)時(shí),求證:∠OPC=∠AQC;
(3)點(diǎn)M,N分別在線段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M,N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接AN,當(dāng)△AMN的面積最大時(shí),
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請說明你的理由.
解:(1)∵二次函數(shù)的圖象與x軸相交于點(diǎn)A(﹣3,0)、B(﹣1,0),
∴設(shè)二次函數(shù)的解析式為:y=a(x+3)(x+1)。
∵二次函數(shù)的圖象經(jīng)過點(diǎn)C(0,3),∴3=a×3×1,解得a=1。
∴二次函數(shù)的解析式為:y=(x+3)(x+1),即y =x2+4x+3。
(2)證明:在二次函數(shù)解析式y(tǒng)=x2+4x+3中,當(dāng)x=﹣4時(shí),y=3,∴P(﹣4,3)。
∵P(﹣4,3),C(0,3),∴PC=4,PC∥x軸。
∵一次函數(shù)y=kx﹣4k(k≠0)的圖象交x軸于點(diǎn)Q,當(dāng)y=0時(shí),x=4,∴Q(4,0),OQ=4。
∴PC=OQ。
又∵PC∥x軸,∴四邊形POQC是平行四邊形。
∴∠OPC=∠AQC。
(3)①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答圖1所示,過點(diǎn)N作ND⊥x軸于點(diǎn)D,則ND∥OC,
∴△QND∽△QCO。
∴,即,
解得:。
設(shè)S=S△AMN,則:
。
又∵AQ=7,點(diǎn)M的速度是每秒3個(gè)單位長度,
∴點(diǎn)M到達(dá)終點(diǎn)的時(shí)間為t=,
∴(0<t≤)。
∵<0,<,且x<時(shí),y隨x的增大而增大,
∴當(dāng)t=時(shí),△AMN的面積最大。
②假設(shè)直線PQ能夠垂直平分線段MN,則有QM=QN,且PQ⊥MN,PQ平分∠AQC。
由QM=QN,得:7﹣3t=5﹣t,解得t=1。
此時(shí)點(diǎn)M與點(diǎn)O重合,如答圖2所示,
設(shè)PQ與OC交于點(diǎn)E,由(2)可知,四邊形POQC是平行四邊形,
∴OE=CE。
∵點(diǎn)E到CQ的距離小于CE,
∴點(diǎn)E到CQ的距離小于OE。
而OE⊥x軸,
∴PQ不是∠AQC的平分線,這與假設(shè)矛盾。
∴直線PQ不能垂直平分線段MN
解析試題分析:(1)利用交點(diǎn)式求出拋物線的解析式。
(2)證明四邊形POQC是平行四邊形,則結(jié)論得證。
(3)①求出△AMN面積的表達(dá)式,利用二次函數(shù)的性質(zhì),求出△AMN面積最大時(shí)t的值。
②由于直線PQ上的點(diǎn)到∠AQC兩邊的距離不相等,則直線PQ不能平分∠AQC,所以直線PQ不能垂直平分線段MN。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與x軸交于點(diǎn)A(1,0),B(3,0),且過點(diǎn)C(0,﹣3).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在直線y=﹣x上,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:一元二次方程.
(1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
(2)設(shè)k<0,當(dāng)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點(diǎn)為C,過y軸上一點(diǎn)M(0,m)作y軸的垂線l,當(dāng)m為何值時(shí),直線l與△ABC的外接圓有公共點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤不低于300元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,某學(xué)校擬建一個(gè)含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個(gè)頂點(diǎn)分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設(shè)AE=x米(0<x<4),矩形EFGH的面積為S米2.
(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準(zhǔn)備在矩形內(nèi)種植紅色花草,四個(gè)三角形內(nèi)種植黃色花草.已知紅色花草的價(jià)格為20元/米2,黃色花草的價(jià)格為40元/米2.當(dāng)x為何值時(shí),購買花草所需的總費(fèi)用最低,并求出最低總費(fèi)用(結(jié)果保留根號(hào))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,AB是半圓O的直徑,以O(shè)A為直徑作半圓C,P是半圓C上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A,O不重合),AP的延長線交半圓O于點(diǎn)D,其中OA=4.
(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接OD,當(dāng)OD與半圓C相切時(shí),求的長;
(3)過點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線(a≠0)經(jīng)過點(diǎn)A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A、N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com