【題目】四邊形具有不穩(wěn)定性,對于四條邊長確定的四邊形.當內(nèi)角度數(shù)發(fā)生變化時,其形狀也會隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABCD.若DAB30°,則菱形ABCD的面積與正方形ABCD的面積之比是( 。

A.1B.C.D.

【答案】B

【解析】

如圖,連接DD,延長CD'交ADE,由菱形ABCD',可得ABCD,進一步說明∠EDD=30°,得到菱形AE=AD;又由正方形ABCD,得到AB=AD,即菱形的高為AB的一半,然后分別求出菱形ABCD'和正方形ABCD的面積,最后求比即可.

解:如圖:延長CD'交ADE

菱形ABCD

ABCD

DAB=30°

∴∠A DE=DAB=30°

AE=AD

正方形ABCD

AB=AD,即菱形的高為AB的一半

菱形ABCD的面積為,正方形ABCD的面積為AB2

菱形ABCD的面積與正方形ABCD的面積之比是

故答案為B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)復工之后,舉行了一個簡單的技工比賽,參賽的五名選手在單位時間內(nèi)加工零件的合格率分別為:94.3% ,96.1% 94.3% ,91.7% ,93.5%.關于這組數(shù)據(jù),下列說法正確的是(。

A.平均數(shù)是93.96%B.方差是0

C.中位數(shù)是93.5%D.眾數(shù)是94.3%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,tt.其中正確的結(jié)論有(  )

A. ①②③④B. ①②④

C. ①②D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一塊長為40cm,寬為30cm的矩形硬紙板的四角剪去四個相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個無蓋紙盒.若該無蓋紙盒的底面積為600cm2,設剪去小正方形的邊長為xcm,則可列方程為( 。

A.302x)(40x)=600B.30x)(40x)=600

C.30x)(402x)=600D.302x)(402x)=600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上一點,的平分線于點,過點的延長線于點

1)求證:的切線;

2)過點于點,連接.若,,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一種升降熨燙臺如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調(diào)整熨燙臺的高度.圖2是這種升降熨燙臺的平面示意圖.ABCD是兩根相同長度的活動支撐桿,點O是它們的連接點,OA=OC,hcm)表示熨燙臺的高度.

1)如圖21.若AB=CD=110cm,∠AOC=120°,求h的值;

2)愛動腦筋的小明發(fā)現(xiàn),當家里這種升降熨燙臺的高度為120cm時,兩根支撐桿的夾角∠AOC74°(如圖22).求該熨燙臺支撐桿AB的長度(結(jié)果精確到lcm).

(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張矩形紙條ABCD,AB5cmBC2cm,點M,N分別在邊ABCD上,CN1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點B,C分別落在點B',C'上.當點B'恰好落在邊CD上時,線段BM的長為_____cm;在點M從點A運動到點B的過程中,若邊MB'與邊CD交于點E,則點E相應運動的路徑長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知動點A在函數(shù)的圖象上,ABx軸于點B,ACy軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點M、N,當NF4EM時,圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點,點軸正半軸上,以為一邊作等腰直角,使得點在第一象限.

1)求出所有符合題意的點的坐標;

2)在內(nèi)部存在一點,使得之和最小,請求出這個和的最小值.

查看答案和解析>>

同步練習冊答案