【題目】如圖,已知點(diǎn)A(3,4),點(diǎn)B為直線x=﹣2上的動(dòng)點(diǎn),點(diǎn)C(x,0)且﹣2<x<3,BC⊥AC垂足為點(diǎn)C,連接AB.若AB與y軸正半軸的所夾銳角為α,當(dāng)tanα的值最大時(shí)x的值為( 。
A.B.C.1D.
【答案】A
【解析】
設(shè)直線x=2與x軸交于G,過A作AH⊥直線x=2于H,AF⊥x軸于F,根據(jù)平行線的性質(zhì)得到∠ABH=α,由三角函數(shù)的定義得到tanα=,即可得當(dāng)BH最小時(shí)tanα有最大值;即BG最大時(shí),tanα有最大值,然后證明△ACF∽△CBG,根據(jù)相似三角形的性質(zhì)列出比例式,最后根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
如圖,設(shè)直線x=﹣2與x軸交于G,過A作AH⊥直線x=﹣2于H,AF⊥x軸于F,
∵BH∥y軸,
∴∠ABH=α,
在Rt△ABH中,tanα=,
∵tanα隨BH的增大而減小,
∴當(dāng)BH最小時(shí)tanα有最大值;即BG最大時(shí),tanα有最大值,
∵∠BGC=∠ACB=∠AFC=90°,
∴∠GBC+∠BCG=∠BCG+∠ACF=90°,
∴∠GBC=∠ACF,
∴△ACF∽△CBG,
∴,
設(shè)BG=y,則,
∴,
∴當(dāng)x=時(shí),BG取最大值,tanα取最大值,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像與y軸交于點(diǎn)A,一次函數(shù)的圖像經(jīng)過點(diǎn)A,且與二次函數(shù)圖像的另一個(gè)交點(diǎn)為點(diǎn)B.
(1)用含有字母b代數(shù)式表示點(diǎn)B的坐標(biāo).
(2)點(diǎn)M的坐標(biāo)為(-2,0),過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)C.
①當(dāng)x<-2時(shí),y1<y2,求b的取值范圍;
②若△ABC是直角三角形,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到矩形,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為
(1)當(dāng)點(diǎn)落在上時(shí)
①如圖1,若,求證:
②如圖2,交于點(diǎn).若,求證:;
(2)若,
①如圖3,當(dāng)過點(diǎn)C時(shí),則的長=_____.
②當(dāng)時(shí),作,繞點(diǎn)轉(zhuǎn)動(dòng),當(dāng)直線經(jīng)過時(shí),直線交邊于,的值=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中,動(dòng)點(diǎn)以每秒個(gè)單位長度的速度從點(diǎn)向終點(diǎn)運(yùn)動(dòng),過點(diǎn)作于點(diǎn)以為鄰邊作與等腰直角的重疊部分面積為(平方單位),,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
(1)直接寫出點(diǎn)落在邊上時(shí)的值.
(2)求與的函數(shù)關(guān)系式
(3)直接寫出點(diǎn)分別落在三邊的垂直平分線上時(shí)的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京杭大運(yùn)河是世界文化遺產(chǎn).綜合實(shí)踐活動(dòng)小組為了測(cè)出某段運(yùn)河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點(diǎn)A、B和點(diǎn)C、D,先用卷尺量得AB=160m,CD=40m,再用測(cè)角儀測(cè)得∠CAB=30°,∠DBA=60°,求該段運(yùn)河的河寬(即CH的長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)和,以下結(jié)論:①,②,③,④當(dāng)時(shí),.其中正確的結(jié)論的個(gè)數(shù)是( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價(jià)分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費(fèi)用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D.
(1)求直線BC的解析式;
(2)如圖2,點(diǎn)P為直線BC上方拋物線上一點(diǎn),連接PB、PC.當(dāng)△PBC的面積最大時(shí),在線段BC上找一點(diǎn)E(不與B、C重合),使PE+BE的值最小,求點(diǎn)P的坐標(biāo)和PE+BE的最小值;
(3)如圖3,點(diǎn)G是線段CB的中點(diǎn),將拋物線y=﹣x2+x+沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為F.在拋物線y′的對(duì)稱軸上,是否存在一點(diǎn)Q,使得△FGQ為直角三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線:與軸交于兩點(diǎn)(在的左側(cè)),與軸交于點(diǎn).
(1)求拋物線的解析式及兩點(diǎn)的坐標(biāo);
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)將拋物線向上平移3個(gè)單位長度,再向右平移個(gè)單位長度,得到拋物線.①若拋物線的頂點(diǎn)在內(nèi),求的取值范圍;②若拋物線與線段只有一個(gè)交點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com