13.若關(guān)于x的方程2x+a-4=0的解是x=2,則a的值等于(  )
A.-8B.0C.2D.8

分析 把x=2代入方程計算即可求出a的值.

解答 解:把x=2代入方程得:4+a-4=0,
解得:a=0,
故選B

點評 此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當(dāng)∠APD=90°時,易證△ABP∽△PCD,從而得到BP•PC=AB•CD(不需證明)

探究:如圖②,在四邊形ABCD中,點P在BC邊上,當(dāng)∠B=∠C=∠APD時,結(jié)論BP•PC=AB•CD仍成立嗎?請說明理由?
拓展:如圖③,在△ABC中,點P是BC的中點,點D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=4$\sqrt{2}$,CE=3,則DE的長為$\frac{5}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知點A的坐標(biāo)為(0,-1),點C(m,0)是x軸上的一個動點.
(1)如圖1,點B在第四象限,△AOB和△BCD都是等邊三角形,點D在BC的上方,當(dāng)點C在x軸上運動到如圖所示的位置時,連接AD,請證明△ABD≌△OBC;
(2)如圖2,點B在x軸的正半軸上,△ABO和△ACD都是等腰直角三角形,點D在AC的上方,∠D=90°,當(dāng)點C在x軸上運動(m>1)時,設(shè)點D的坐標(biāo)為(x,y),請?zhí)角髖與x之間的函數(shù)表達(dá)式;
(3)如圖3,四邊形ACEF是菱形,且∠ACE=90°,點E在AC的上方,當(dāng)點C在x軸上運動(m>1)時,設(shè)點E的坐標(biāo)為(x,y),請?zhí)角髖與x之間的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)S一枚質(zhì)地不均勻的骰子,做了大量的重復(fù)試驗,發(fā)現(xiàn)“朝上一面為6點”出現(xiàn)的頻率越來越穩(wěn)定于0.4.那么,擲一次該骰子,“朝上一面為6點”的概率為0.4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標(biāo)中,點A的坐標(biāo)是(-3,4),若點A與點B關(guān)于原點對稱,則點B的坐標(biāo)為(3,-4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.若一個角比它的補角大36°48′,則這個角為108°24′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系中,將拋物線y=x2-2x-1先向上平移3個單位長度,再向左平移2個單位長度,所得的拋物線的解析式是( 。
A.y=(x+1)2+1B.y=(x-3)2+1C.y=(x-3)2-5D.y=(x+1)2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.如圖,這是一個運算的流程圖,輸入正整數(shù)x的值,按流程圖進(jìn)行操作并輸出y的值.例如,若輸入x=10,則輸出y=5.若輸出y=3,則輸入的x的值為5或6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.已知:A、B、C是⊙O上的三個點,且∠AOB=60°,那么∠ACB 的度數(shù)是( 。
A.30°B.120°C.150°D.30°或 150°

查看答案和解析>>

同步練習(xí)冊答案