【題目】(8分)如圖,AC是ABCD的一條對(duì)角線,過(guò)AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F(xiàn).
(1)求證:△AOE≌△COF;
(2)當(dāng)EF與AC滿足什么條件時(shí),四邊形AFCE是菱形?并說(shuō)明理由.
【答案】(1)參見解析;(2)EF⊥AC時(shí),四邊形AFCE是菱形.
【解析】
試題(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠EAO=∠FCO,利用對(duì)頂角相等∠AOE=∠COF,O是AC的中點(diǎn),OA=OC,所以由ASA即可得出結(jié)論;(2)此題應(yīng)用菱形的判定,先說(shuō)明四邊形AFCE已經(jīng)是平行四邊形,再應(yīng)用對(duì)角線互相垂直的平行四邊形是菱形即可.由△AOE≌△COF,得出對(duì)應(yīng)邊相等AE=CF,證出四邊形AFCE是平行四邊形,再由對(duì)角線EF⊥AC,即可得出四邊形AFCE是菱形.
試題解析:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠EAO=∠FCO,∵O是CA的中點(diǎn),∴OA=OC,又∵∠AOE=∠COF(對(duì)頂角相等),∴△AOE≌△COF(ASA);(2)∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四邊形AFCE是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),當(dāng)EF⊥AC時(shí)四邊形AFCE是菱形(對(duì)角線互相垂直的平行四邊形是菱形),∴EF⊥AC時(shí),四邊形AFCE是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長(zhǎng)AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系平面內(nèi),函數(shù)y=(x>0,m是常數(shù))的圖象經(jīng)過(guò)A(1,4)、B(a,b),其中a>1,過(guò)點(diǎn)A作x軸的垂線,垂足為C,過(guò)點(diǎn)B作y軸的垂線,垂足為D,連接AD,AB,DC,CB.
(1)求反比例函數(shù)解析式;
(2)當(dāng)△ABD的面積為S,試用a的代數(shù)式表示求S.
(3)當(dāng)△ABD的面積為2時(shí),判斷四邊形ABCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B是雙曲線y=(k>0)上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、3a,線段AB的延長(zhǎng)線交x軸于點(diǎn)C,若S△AOC=3.則k的值為( )
A. 2 B. 1.5 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,完成(1)-(3)題:數(shù)學(xué)課上,老師出示了這樣一道題:如圖1,點(diǎn)是正邊上一點(diǎn)以為邊做正,連接.探究線段與的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法:
小明:“通過(guò)觀察和度量,發(fā)現(xiàn)與相等.”
小偉:“通過(guò)全等三角形證明,再經(jīng)過(guò)進(jìn)一步推理,可以得到線段平分.”......
老師:“保留原題條件,連接,是的延長(zhǎng)線上一點(diǎn),(如圖2),如果,可以求出、、三條線段之間的數(shù)量關(guān)系.”
(1)求證;
(2)求證線段平分;
(3)探究、、三條線段之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC的一邊AB上有一點(diǎn)P.
(1)能否在另外兩邊AC和BC上各找一點(diǎn)M、N,使得△PMN的周長(zhǎng)最短.若能,請(qǐng)畫出點(diǎn)M、N的位置,若不能,請(qǐng)說(shuō)明理由;
(2)若∠ACB=40°,在(1)的條件下,求出∠MPN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,弧AB所對(duì)的圓心角∠AOB=108°,點(diǎn)C為⊙O上的動(dòng)點(diǎn),以AO、AC為邊構(gòu)造AODC.當(dāng)∠A=_____°時(shí),線段BD最長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過(guò)程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖所示,乙從B地到A地需要( )分鐘
A.12B.14C.18D.20
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com