【題目】以下是推導三角形內(nèi)角和定理的學習過程,請補全證明過程及推理依據(jù).

已知:如圖,ABC

求證:∠A+B+C=180°

證明:過點ADEBC,(請在圖上畫出該輔助線并標注D,E兩個字母)

B=BAD,∠C= .(

∵點DA,E在同一條直線上,

(平角的定義)

∴∠B+BAC+C=180°

即三角形的內(nèi)角和為180°

【答案】EAC;兩直線平行,內(nèi)錯角相等;∠DAB+BAC+CAE=180°

【解析】

過點ADEBC,依據(jù)平行線的性質(zhì),即可得到∠B=BAD,∠C=EAC,再根據(jù)平角的定義,即可得到三角形的內(nèi)角和為180°

證明:如圖,過點ADEBC

則∠B=BAD,∠C=EAC.( 兩直線平行,內(nèi)錯角相等)

∵點D,AE在同一條直線上,

∴∠DAB+BAC+CAE=180°(平角的定義)

∴∠B+BAC+C=180°

即三角形的內(nèi)角和為180°

故答案為:∠EAC;兩直線平行,內(nèi)錯角相等;∠DAB+BAC+CAE=180°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,邊上一點,且,有下列結論:①;②是等邊三角形;③是等腰三角形;④,其中結論正確的有_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

(1)為何值時,方程有一根為零?

(2)為何值時,方程的兩個根互為相反數(shù)?

(3)是否存在,使方程的兩個根互為倒數(shù)?若存在,請求出的值;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE-ED-DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設P、Q同發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關系圖象如圖2)(曲線OM為拋物線的一部分,則下列結論:

①AD=BE=5;

②cos∠ABE=;

③當0<t≤5時,y=t2

④當t=秒時,△ABE∽△QBP;

其中正確的結論是 填序號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決中小學大班額問題,東營市各縣區(qū)今年將改擴建部分中小學,某縣計劃對A、B兩類學校進行改擴建,根據(jù)預算,改擴建2所A類學校和3所B類學校共需資金7800萬元,改擴建3所A類學校和1所B類學校共需資金5400萬元.

(1)改擴建1所A類學校和1所B類學校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).

1)求拋物線的解析式;

2)試探究ABC的外接圓的圓心位置,并求出圓心坐標;

3)若點M是線段BC下方的拋物線上一點,求MBC的面積的最大值,并求出此時M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線,點在直線上,以點為圓心,適當長為半徑畫弧,分別交直線于點,連接. ,則的度數(shù)為____________.

查看答案和解析>>

同步練習冊答案