【題目】已知直線y=kx+b經(jīng)過(guò)點(diǎn)A(5,0),B(1 ,4)
(1)求直線AB的解析式:
(2)若直線y=2x-4與直線AB相交于點(diǎn)C,求點(diǎn)C 的坐標(biāo)
(3)結(jié)合圖象,寫(xiě)出關(guān)于x的不等式2x- 4≥kx+b的解集,
(4)若直線y=2x-4與x軸交于點(diǎn)D.求△ACD的面積。
【答案】(1)y=-x+5,
(2)(3,2)
(3)x≥3,
(4)3
【解析】
(1)待定系數(shù)法求解,
(2)聯(lián)立函數(shù)解析式,組成二元一次方程組求解即可,
(3)作出圖像,找到y=-x+5的上方和重合的區(qū)域,
(4)利用坐標(biāo)的幾何含義解題.
解:(1)將A(5,0),B(1 ,4)代入y=kx+b中得,
解得:
∴y=-x+5,
(2)聯(lián)立函數(shù)解析式得 解得:
∴C點(diǎn)坐標(biāo)是(3,2)
(3)作出圖像,
由圖可知, 2x- 4≥kx+b是取2y=x- 4在y=-x+5的上方和重合的區(qū)域,
即x≥3,
(4)令y=2x-4中的y=0,解得x=2,
∴D(2,0)
∴AD=3,C的縱坐標(biāo)2 是高,
∴S△ADC==3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=8,BC=6,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在線段BC上以每秒2個(gè)單位的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上以每秒a個(gè)單位的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).
(1)用含t的代數(shù)式表示線段PC的長(zhǎng);
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,t=1時(shí),△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,△BPD與△CQP全等時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,AB=8,AD=6;點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn),連接CE,作EF⊥CE交AB邊于點(diǎn)F,以CE和EF為鄰邊作矩形CEFG,作其對(duì)角線相交于點(diǎn)H.
(1)①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),CE= ,CG= ;
②如圖3,當(dāng)點(diǎn)E是BD中點(diǎn)時(shí),CE= ,CG= ;
(2)在圖1,連接BG,當(dāng)矩形CEFG隨著點(diǎn)E的運(yùn)動(dòng)而變化時(shí),猜想△EBG的形狀?并加以證明;
(3)在圖1,的值是否會(huì)發(fā)生改變?若不變,求出它的值;若改變,說(shuō)明理由;
(4)在圖1,設(shè)DE的長(zhǎng)為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的⊙O交AC于點(diǎn)E,過(guò)點(diǎn)E作AB的垂線交AB于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)G,且∠ABG=2∠C.
(1)求證:EG是⊙O的切線;
(2)若tanC=,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,則下列結(jié)論:①.AD平分∠BAC;②.△BED≌△FPD;③.DP∥AB;④.DF是PC的垂直平分線.其中正確的是= _________ .(寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,先描出點(diǎn),點(diǎn).
(1)描出點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)的位置,寫(xiě)出的坐標(biāo) ;
(2)用尺規(guī)在軸上找一點(diǎn),使的值最小(保留作圖痕跡);
(3)用尺規(guī)在軸上找一點(diǎn),使(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為BC邊上一點(diǎn),∠1=∠2=∠3,AC=AE.
求證:△ABC≌△ADE;(填空)
證明:∵∠2+∠E+∠AFE=180° ( )
∠3+∠C+∠CFD=180°(同理)
又∵∠2=∠3( )
∠AFE=∠CFD( )
∴∠E=_________.
∵∠1=∠2(已知)
∴∠1+∠CAD=∠2+∠_______.
即∠BAC=∠DAE
在△ABC和△ADE中
∴△ABC≌△ADE( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D為的AB邊上的中點(diǎn),點(diǎn)前E為AD的中點(diǎn),為正三角形,給出下列結(jié)論,①,②,③,④若,點(diǎn)是上一動(dòng)點(diǎn),點(diǎn)到、邊的距離分別為,,則的最小值是3.其中正確的結(jié)論是_________(填寫(xiě)正確結(jié)論的番號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com