【題目】如圖,長方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=6, AB=CD=10.點(diǎn)E為射線DC上的一個(gè)動點(diǎn),△ADE與△AD′E關(guān)于直線AE對稱,當(dāng)△AD′B為直角三角形時(shí),DE的長為( 。
A.2或8B.或18C.或2D.2或18
【答案】D
【解析】
分兩種情況:點(diǎn)E在DC線段上,點(diǎn)E為DC延長線上的一點(diǎn),進(jìn)一步分析探討得出答案即可.
解:如圖1,
∵折疊,
∴△AD′E≌△ADE,
∴∠AD′E=∠D=90°,
∵∠AD′B=90°,
∴B、D′、E三點(diǎn)共線,
又∵ABD′∽△BEC,AD′=BC,
∴ABD′≌△BEC,
∴BE=AB=10,
∵,
∴;
如圖2,
∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,
∴∠CBE=∠BAD″,
在△ABD″和△BEC中,
,
∴△ABD″≌△BEC,
∴BE=AB=10,
∴DE=D″E=10+8=18.
綜上所知,DE=2或18.
故答案為A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點(diǎn)O在BC上,且OC=3cm,動點(diǎn)P從點(diǎn)E沿射線EC以2cm/s速度運(yùn)動,連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動的時(shí)間ts.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD平分∠BAC,BD⊥AD,垂足為D,過D作DE∥AC,交AB于E,若BD=7,AD=24,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時(shí),矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時(shí)的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在4×8的網(wǎng)格紙中,每個(gè)小正方形的邊長都為1,動點(diǎn)P、Q分別從點(diǎn)D、A同時(shí)出發(fā)向右移動,點(diǎn)P的運(yùn)動速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t(0<t<4).
(1)請?jiān)?/span>4×8的網(wǎng)格紙圖①中畫出t為3秒時(shí)的線段PQ.并求其長度;
(2)若M是BC的中點(diǎn),記△PQM的面積為S,請用含有t的代數(shù)式來表示S;
(3)當(dāng)t為多少時(shí),△PQB是以PQ為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一塊三角形的土地要分給甲、乙、丙三家農(nóng)戶. 如圖,如果∠A=90°,∠B=30°.
(1)這三家農(nóng)戶所得土地的大小、形狀都相同,請你在圖中試著分一分,并簡潔說明你的理由.
(2)要使這三家農(nóng)戶所得土地是面積相等的三角形,且有一個(gè)公共頂點(diǎn),請你在備用圖中試著分一分,并簡潔說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班同學(xué)上數(shù)學(xué)活動課,利用角尺平分一個(gè)角(如圖).設(shè)計(jì)了如下方案:
(Ⅰ)∠AOB是一個(gè)任意角,將角尺的直角頂點(diǎn)P介于射線OA,OB之間,移動角尺使角尺兩邊相同的刻度與M,N重合,即PM=PN,過角尺頂點(diǎn)P的射線OP就是∠AOB的平分線.
(Ⅱ)∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,將角尺的直角頂點(diǎn)P介于射線OA,OB之間,移動角尺使角尺兩邊相同的刻度與M,N重合,即PM=PN,過角尺頂點(diǎn)P的射線OP就是∠AOB的平分線.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,請證明;若不可行,請說明理由.
(2)在方案(Ⅰ)PM=PN的情況下,繼續(xù)移動角尺,同時(shí)使PM⊥OA,PN⊥OB.此方案是否可行?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com