【答案】
(1)解:∵原方程有兩個(gè)實(shí)數(shù)根,
∴[﹣(2k+1)]2﹣4(k2+2k)≥0,
∴4k2+4k+1﹣4k2﹣8k≥0
∴1﹣4k≥0,
∴k≤ .
∴當(dāng)k≤ 時(shí),原方程有兩個(gè)實(shí)數(shù)根
(2)解:假設(shè)存在實(shí)數(shù)k使得 ≥0成立.
∵x1,x2是原方程的兩根,
∴ .
由 ≥0,
得 ≥0.
∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,
∴只有當(dāng)k=1時(shí),上式才能成立
又∵由(1)知k≤ ,
∴不存在實(shí)數(shù)k使得 ≥0成立
【解析】(1)根據(jù)已知一元二次方程的根的情況,得到根的判別式△≥0,據(jù)此列出關(guān)于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通過(guò)解該不等式即可求得k的取值范圍;(2)假設(shè)存在實(shí)數(shù)k使得 ≥0成立.利用根與系數(shù)的關(guān)系可以求得 ,然后利用完全平方公式可以把已知不等式轉(zhuǎn)化為含有兩根之和、兩根之積的形式 ≥0,通過(guò)解不等式可以求得k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.
(1)若∠AOE=140°,求∠AOC的度數(shù);
(2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小英在周末和爸爸媽媽以及爺爺奶奶一行6人,自駕外出旅游,出發(fā)前油箱里有油5升,在加油站加140元的油.已知油價(jià)是7元/升,目的地距離出發(fā)地320千米,正常行駛時(shí),車(chē)子的耗油情況是0.42元/千米.
(1)在加油站加油 升;車(chē)子的耗油情況換算成 升/千米.
(2)在行駛過(guò)程中,設(shè)油箱內(nèi)余油y(升),行駛路程x(千米),將y表示為x的函數(shù).
(3)若油箱里余油量低于5升會(huì)自動(dòng)報(bào)警,通過(guò)計(jì)算回答,小明他們?cè)诘竭_(dá)目的地之前,車(chē)子是否會(huì)自動(dòng)報(bào)警.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE丄EF,EF丄FC,并且AE=3,EF=4,F(xiàn)C=5,則正方形ABCD的外接圓的半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把幾個(gè)數(shù)用大括號(hào)括起來(lái),中間用逗號(hào)斷開(kāi),如:{1,2,-3},{-2,7,,19},我們稱(chēng)之為集合,其中的數(shù)稱(chēng)為集合的元素.如果一個(gè)集合滿足:當(dāng)有理數(shù)a是集合的元素時(shí),有理數(shù)5-a也必是這個(gè)集合的元素,這樣的集合我們稱(chēng)為好的集合.例如集合{5,0}就是一個(gè)好的集合.
(1)請(qǐng)你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?
(2)請(qǐng)你再寫(xiě)出兩個(gè)好的集合(不得與上面出現(xiàn)過(guò)的集合重復(fù));
(3)寫(xiě)出所有好的集合中,元素個(gè)數(shù)最少的集合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC至E,使CE=CD.
(1)求證:DB=DE;
(2)過(guò)點(diǎn)D作DF垂直BE,垂足為F,若CF=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ADC=∠EFC,∠3=∠C,可推得∠1=∠2.理由如下:
解:因?yàn)椤?/span>ADC=∠EFC(已知)
所以AD∥EF( ).
所以∠1=∠4( ),
因?yàn)椤?/span>3=∠C(已知),
所以AC∥DG( ).
所以∠2=∠4( ).
所以∠1=∠2(等量代換).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com