【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點(diǎn)A、B,設(shè)M是OB上一點(diǎn),若將△ABM沿AM折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)B′處.求:
(1)點(diǎn)B′的坐標(biāo);
(2)直線AM所對(duì)應(yīng)的函數(shù)關(guān)系式.
【答案】(1)B'的坐標(biāo)為:(﹣4,0);(2)直線AM的解析式為:y=﹣ x+3.
【解析】試題分析:(1)先確定點(diǎn)A、點(diǎn)B的坐標(biāo),再由AB=AB',可得AB'的長(zhǎng)度,求出OB'的長(zhǎng)度,即可得出點(diǎn)B'的坐標(biāo);
(2)設(shè)OM=m,則B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐標(biāo)后,利用待定系數(shù)法可求出AM所對(duì)應(yīng)的函數(shù)解析式.
解:(1)y=﹣x+8,
令x=0,則y=8,
令y=0,則x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8 AB=10,
∵A B'=AB=10,
∴O B'=10﹣6=4,
∴B'的坐標(biāo)為:(﹣4,0).
(2)設(shè)OM=m,則B'M=BM=8﹣m,
在Rt△OMB'中,m2+42=(8﹣m)2,
解得:m=3,
∴M的坐標(biāo)為:(0,3),
設(shè)直線AM的解析式為y=kx+b,
則,
解得:,
故直線AM的解析式為:y=﹣x+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC中,∠C=90,AC=4,BC=8。動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒2個(gè)單位的速度沿射線CB方向運(yùn)動(dòng),連接AP.設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)求斜邊AB的長(zhǎng).
(2)當(dāng)t為何值時(shí),△PAB的面積為6?
(3)若t<4,請(qǐng)?jiān)谒o的圖中畫(huà)出△PAB中AP邊上的高BQ,問(wèn):當(dāng)t為何值時(shí),BQ長(zhǎng)為4?并直接寫(xiě)出此時(shí)點(diǎn)Q到邊BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組五名同學(xué)在期末模擬考試(滿分為120)的成績(jī)?nèi)缦拢?/span>100、100、x、x、80.已知這組數(shù)據(jù)的中位數(shù)和平均數(shù)相等,那么整數(shù)x的值可以是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次數(shù)學(xué)測(cè)試中,某學(xué)習(xí)小組5人的成績(jī)分別是120、100、135、100、125,則他們成績(jī)的中位數(shù)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是-1≤x<3 ;
⑤當(dāng)x<0時(shí),y隨x增大而增大;
其中正確的個(gè)數(shù)是 ( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種零件,標(biāo)明要求是φ20±0.2 mm(φ表示直徑,單位:毫米),經(jīng)檢查,一個(gè)零件的直徑是19.9mm,該零件_____________(填“合格” 或“不合格”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點(diǎn),CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.小昊發(fā)現(xiàn),過(guò)點(diǎn)A作AF∥BC,交BE的延長(zhǎng)線于點(diǎn)F,通過(guò)構(gòu)造△AEF,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問(wèn)題的方法,解決問(wèn)題:
如圖3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長(zhǎng)線上,AD與AC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有以下五個(gè)結(jié)論:①0沒(méi)有相反數(shù);②若兩個(gè)數(shù)互為相反數(shù),則它們相除的商等于-1;③負(fù)數(shù)的絕對(duì)值是它的倒數(shù);④絕對(duì)值等于其本身的有理數(shù)是零;⑤幾個(gè)有理數(shù)相乘,負(fù)因數(shù)個(gè)數(shù)為奇數(shù)則乘積為負(fù)數(shù).其中正確的有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1cm/秒的速度移動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以2cm/秒的速度移動(dòng).如果P、Q分別從A、C同時(shí)出發(fā).設(shè)移動(dòng)的時(shí)間為t.
求:(1)t為何值時(shí),梯形PQCD是等腰梯形;
(2)t為何值時(shí),AB的中點(diǎn)E到線段PQ的距離為7cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com