【題目】今年是第39個(gè)植樹(shù)節(jié),我們提出了“追求綠色時(shí)尚,走向綠色文明”的倡議.某校為積極響應(yīng)這一倡議,立即在八、九年級(jí)開(kāi)展征文活動(dòng),校團(tuán)委對(duì)這兩個(gè)年級(jí)各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中投稿3篇的班級(jí)個(gè)數(shù)所對(duì)應(yīng)的扇形的圓心角的度數(shù).
(2)求該校八、九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在投稿篇數(shù)最多的4個(gè)班中,八、九年級(jí)各有兩個(gè)班,校團(tuán)委準(zhǔn)備從這四個(gè)班中選出兩個(gè)班參加全校的表彰會(huì),請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法求出所選兩個(gè)班正好不在同一年級(jí)的概率.
【答案】
(1)解:班級(jí)總個(gè)數(shù)為:3÷25%=12(個(gè)), ×360°=60°.
故投稿篇數(shù)為3所對(duì)應(yīng)的扇形的圓心角的度數(shù)為60°
(2)解:投稿5篇的班級(jí)數(shù)為:12﹣1﹣2﹣3﹣4=2(個(gè)),
(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇),
將該條形統(tǒng)計(jì)圖補(bǔ)充完整為:
(3)解:畫(huà)樹(shù)狀圖如下:
,
總共12種情況,兩班不在同一年級(jí)的有8種情況,
所以所選兩個(gè)班不是同一年級(jí)的概率為:8÷12=
【解析】(1)根據(jù)投稿6篇的班級(jí)個(gè)數(shù)是3個(gè),所占的比例是25%,可求總共班級(jí)個(gè)數(shù),利用投稿篇數(shù)為3的比例乘以360°即可求解;(2)根據(jù)加權(quán)平均數(shù)公式可求該校八,九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù),再用總共班級(jí)個(gè)數(shù)﹣不同投稿情況的班級(jí)個(gè)數(shù)即可求解;(3)利用樹(shù)狀圖法,然后利用概率的計(jì)算公式即可求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長(zhǎng)的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=7,點(diǎn)E,F(xiàn)分別在邊AD、BC上,且B、F關(guān)于過(guò)點(diǎn)E的直線對(duì)稱,如果以CD為直徑的圓與EF相切,那么AE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠MON=45°,點(diǎn)P是∠MON內(nèi)一點(diǎn),過(guò)點(diǎn)P作PA⊥OM于點(diǎn)A、PB⊥ON于點(diǎn)B,且PB=2 .取OP的中點(diǎn)C,聯(lián)結(jié)AC并延長(zhǎng),交OB于點(diǎn)D.
(1)求證:∠ADB=∠OPB;
(2)設(shè)PA=x,OD=y,求y關(guān)于x的函數(shù)解析式;
(3)分別聯(lián)結(jié)AB、BC,當(dāng)△ABD與△CPB相似時(shí),求PA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,在△ABC中,AB=AC,∠BAC=90°.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為 .
(2)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖乙,①中的結(jié)論是否仍然成立,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=3cm,現(xiàn)將紙片折疊壓平,使點(diǎn)A與點(diǎn)C重合,折痕為EF,如果sin∠BAE= ,那么重疊部分△AEF的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過(guò)A(﹣1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫(xiě)出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過(guò)C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市種植某種綠色蔬菜,全部用來(lái)出口.為了擴(kuò)大出口規(guī)模,該市決定對(duì)這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植﹣畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會(huì)相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com