【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與圖書館的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書館,圖中折線O-A-B-C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請(qǐng)你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式;
(3)若設(shè)兩人在路上相距不超過0.4千米時(shí)稱為可以“互相望見”,則小聰和小明可以“互相望見”的時(shí)間共有多少分鐘?
【答案】(1)20,0.2;;(2)s=t.;(3)分鐘.
【解析】
(1)由函數(shù)圖象的數(shù)據(jù)可以求出小聰在圖書館查閱資料的時(shí)間為20分鐘,由速度=路程÷時(shí)間就可以得出小聰返回學(xué)校的速度;
(2)設(shè)小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式為y=kx,由待定系數(shù)法求出其解即可;
(3)分類討論,當(dāng)小聰、小明同時(shí)出發(fā)后,在小聰?shù)竭_(dá)圖書館之前、當(dāng)小聰、小明在相遇之前及當(dāng)小聰、小明在相遇之后,分別求出來即可.
(1)由題意,得
小聰在圖書館查閱資料的時(shí)間為20分鐘.
小聰返回學(xué)校的速度為4÷20=0.2千米/分鐘.
故答案為:20,0.2;
(2)設(shè)小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式為s=kt,由題意,得
4=60k,
解得:k=.
∴所求函數(shù)表達(dá)式為s=t.
(3)小聰、小明同時(shí)出發(fā)后,在小聰?shù)竭_(dá)圖書館之前,兩人相距0.4千米時(shí),0.4÷(0.2-)=3;
當(dāng)小聰從圖書館返回時(shí):設(shè)直線BC的解析式為s=k1t+b,由題意,得
,
解得:
∴直線BC的函數(shù)式為:s=t+12.
當(dāng)小聰、小明在相遇之前,剛好可以“互相望見”時(shí),即兩人相距0.4千米時(shí),(t+12)- t=0.4,解得t=;
當(dāng)小聰、小明在相遇之后,剛好可以“互相望見”時(shí),即兩人相距0.4千米時(shí),t-(t+12)=0.4,解得t=.
∴所以兩人可以“互相望見”的時(shí)間為:-=3(分鐘)
綜上可知,兩人可以“互相望見”的總時(shí)間為3+3=6(分鐘).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,是的中點(diǎn).將沿對(duì)折至,延長交于點(diǎn),連接、,則下列結(jié)論正確的有( )個(gè).
(1) (2)
(3)的面積是18 (4)
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)本校初2017屆500名學(xué)生中中考參加體育加試測試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測試成績整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績?cè)?/span>8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】明朝的數(shù)學(xué)家程大位在《算法統(tǒng)宗》中有一道古詩趣題:甲趕群羊逐草茂,乙拽只羊隨其后,戲問甲及一百否?甲云所曰無差謬;若得這般一群羊,再添半群小半群,得你一只來方湊,玄機(jī)妙算誰猜透?其大意是:甲趕一群羊去放,乙也牽著一只羊跟在甲的后面.乙問甲:“你的這群羊有沒有一百只呢?”甲說:“我再得這樣的一群羊,再得這群羊的一半,還得這群羊的四分之一,最后湊上你的這只羊,正好是一百只.”問甲原有多少只羊?設(shè)甲原有x只羊,根據(jù)題意,可列方程為_________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線y=-x+與坐標(biāo)軸分別交于點(diǎn)A、B,且點(diǎn)C在x軸負(fù)半軸上,且AB:AC=1:2.
(1)求A、C兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)M從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿射線CB運(yùn)動(dòng),連接AM,設(shè)△ABM的面積為S,點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)點(diǎn)P是y軸上的點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使以A、B、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,,點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)勻速運(yùn)動(dòng),速度為,同時(shí),點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)勻速運(yùn)動(dòng),速度為,當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng),過點(diǎn)做交于點(diǎn),連接、.設(shè)運(yùn)動(dòng)的時(shí)間為.
(1)當(dāng)時(shí),求的值;
(2)是否存在某一時(shí)刻,使得的面積是平行四邊形面積的?若存在,求出相應(yīng)的值;若不存在,請(qǐng)說明理由;
(3)過點(diǎn)作交于點(diǎn),是否存在某一時(shí)刻,使得在線段的垂直平分線上?若存在,求出相應(yīng)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一直線分別于軸、軸交于A、B兩點(diǎn),點(diǎn)A、點(diǎn)D關(guān)于原點(diǎn)對(duì)稱,過點(diǎn)A的拋物線與射線AB交于另一點(diǎn)C,若將沿著CO所在的直線翻折得到,與重疊部分的面積為的.
(1)求B、D兩點(diǎn)的坐標(biāo)(用m的代數(shù)式表示).
(2)當(dāng)落在拋物線上時(shí),求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線y=-x2+bx+c交x軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PG⊥AB于點(diǎn)G.求出△PFG的周長最大值;
(3)在拋物線y=-x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得△ABM與△ABD的面積相等?若存在,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com