精英家教網 > 初中數學 > 題目詳情

【題目】一元二次方程x2﹣2x﹣ =0的某個根,也是一元二次方程x2﹣(k+2)x+ =0的根,求k的值.

【答案】解:x2﹣2x﹣ =0, 移項得:x2﹣2x=
配方得:x2﹣2x+1= ,即(x﹣1)2= ,
開方得:x﹣1=± ,
解得:x1= ,x2=﹣ ,
△=(k+2)2﹣9≥0,即k≥1或k≤﹣5,
①根據題意把x= 代入x2﹣(k+2)x+ =0得:( 2 (k+2)+ =0,
解得:k= ;
②把x=﹣ 代入x2﹣(k+2)x+ =0得:(﹣ 2+ (k+2)+ =0,
解得:k=﹣7,
綜上所述,k的值為﹣7或
【解析】利用配方法求出方程x2﹣2x﹣ =0的解,將求出的解代入x2﹣(k+2)x+ =0中,得到關于k的方程,求出方程的解即可得到k的值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a>0)的圖象經過點B(14,0)和C(0,﹣8),對稱軸為x=4.

(1)求該拋物線的解析式;
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點N以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PN被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點N的運動速度;若不存在,請說明理由;
(3)在(2)的結論下,直線x=1上是否存在點M使△MPN為等腰三角形?若存在,請直接寫出所有點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為迎接“國家衛(wèi)生城市”復檢,某市環(huán)衛(wèi)局準備購買A、B兩種型號的垃圾箱,通過市場調研得知:購買3個A型垃圾箱和2個B型垃圾箱共需540元;購買2個A型垃圾箱比購買3個B型垃圾箱少用160元.
(1)每個A型垃圾箱和B型垃圾箱各多少元?
(2)現需要購買A,B兩種型號的垃圾箱共300個,分別由甲、乙兩人進行安裝,要求在12天內完成(兩人同時進行安裝).已知甲負責A型垃圾箱的安裝,每天可以安裝15個,乙負責B型垃圾箱的安裝,每天可以安裝20個,生產廠家表示若購買A型垃圾箱不少于150個時,該型號的產品可以打九折;若購買B型垃圾箱超過150個時,該型號的產品可以打八折,若既能在規(guī)定時間內完成任務,費用又最低,應購買A型和B型垃圾箱各多少個?最低費用是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的運算流程中,

(1)若輸入的數x=﹣4,則輸出的數y=   ;

(2)若輸出的數y=5,則輸入的數x=   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知5A型機器一天的產品裝滿8箱后還剩4個,7B型機器一天的產品裝滿11箱后還剩1個,每臺A型機器比B型機器一天多生產1個產品.

(1)求每箱裝多少個產品.

(2)3A型機器和2B型機器一天能生產多少個產品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數軸上,AB兩點表示的數a,b滿足|a﹣6|+(b+12)2=0

(1)a=   ,b=   ;

(2)若小球MA點向負半軸運動、小球NB點向正半軸運動,兩球同時出發(fā),小球M運動的速度為每秒2個單位,當M運動到OB的中點時,N點也同時運動到OA的中點,則小球N的速度是每秒   個單位;

(3)若小球M、N保持(2)中的速度,分別從A、B兩點同時出發(fā),經過   秒后兩個小球相距兩個單位長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知數軸上點A表示的為8,B是數軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數軸向左勻速運動,設運動時間為t(t>0)秒.

(1)寫出數軸上點B表示的數 ,點P表示的數 (用含t的代數式表示);

(2)動點H從點B出發(fā),以每秒3個單位長度的速度沿數軸向左勻速運動,若點P、H同時出發(fā),問點P運動多少秒時追上點H?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的x值為48,我們發(fā)現第1次輸出的結果為24,第2次輸出的結果為12,…第2019次輸出的結果為(  )

A. 3 B. 6 C. 12 D. 24

查看答案和解析>>

同步練習冊答案