【題目】有一批共享單車需要維修,維修后繼續(xù)投放騎用,現(xiàn)有甲、乙兩人做維修,甲每天維修16輛,乙每天維修的車輛比甲多8輛,甲單獨維修完成這批共享單車比乙單獨維修完多用20天,公司每天付甲80元維修費,付乙120元維修費.

1)問需要維修的這批共享單車共有多少輛?

2)在維修過程中,公司要派一名人員進行質(zhì)量監(jiān)督,公司負擔他每天10元補助費,現(xiàn)有三種維修方案:①由甲單獨維修;

②由乙單獨維修;

③甲、乙合作同時維修,你認為哪種方案最省錢,為什么?

【答案】1960輛;(2)方案三最省錢,理由見詳解.

【解析】

1)通過理解題意可知本題的等量關(guān)系,即甲乙單獨修完共享單車的數(shù)量相同,列方程求解即可;

2)分別計算,通過比較選擇最省錢的方案.

解:(1)設(shè)乙單獨做需要x天完成,則甲單獨做需要(x+20)天,由題意可得:

16x+20=16+8x,

解得:x=40,

總數(shù):(16+8)×40=960(輛),

∴這批共享單車一共有960輛;

2)方案一:甲單獨完成:60×80+60×10=5400(元),

方案二:乙單獨完成:40×120+40×10=5200(元),

方案三:甲、乙合作完成:960÷(16+24=24(天),

則一共需要:24×(120+80+24×10=5040(元),

,

∴方案三最省錢.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,的角平分線交于點,過點于點,,,連接,,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機,已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.

1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?

2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知線段AB、CD相交于點O,連接AC、BD,則我們把形如這樣的圖形稱為“8字型”.

(1)求證:∠A+∠C=∠B+D;

(2)如圖2,若∠CAB和∠BDC的平分線APDP相交于點P,且與CD、AB分別相交于點M、N.

以線段AC為邊的“8字型”有   個,以點O為交點的“8字型”有   ;

若∠B=100°,∠C=120°,求∠P的度數(shù);

若角平分線中角的關(guān)系改為“∠CAP=∠CAB,∠CDP=∠CDB”,試探究∠P∠B、∠C之間存在的數(shù)量關(guān)系,并證明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊的異側(cè)作,并使.點在射線上.

(1)如圖,若,求證:;

(2),試解決下面兩個問題:

①如圖2,,求的度數(shù);

②如圖3,若,過點交射線于點,當時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE內(nèi)時,∠A與∠1+∠2之間有始終不變的關(guān)系是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

閱讀理解:數(shù)軸是學習有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點表示,這樣能夠運用數(shù)形結(jié)合的方法解決一些問題.例如,兩個有理數(shù)在數(shù)軸上對應(yīng)的點之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:

在數(shù)軸上,有理數(shù)31對應(yīng)的兩點之間的距離為

在數(shù)軸上,有理數(shù)3與-2對應(yīng)的兩點之間的距離為;

在數(shù)軸上,有理數(shù)-3與-2對應(yīng)的兩點之間的距離為.

解決問題:如圖所示,已知點表示的數(shù)為-3,點表示的數(shù)為-1,點表示的數(shù)為2.

1)點和點之間的距離為______.

2)若數(shù)軸上動點表示的數(shù)為,當時,點和點之間的距離可表示為______;當時,點和點之間的距離可表示為______.

3)若數(shù)軸上動點表示的數(shù)為,點在點和點之間,點和點之間的距離表示為,點和點之間的距離表示為,求(用含的代數(shù)式表示并進行化簡)

4)若數(shù)軸上動點表示的數(shù)為-2,將點向右移動19個單位長度,再向左移動23個單位長度終點為,那么,兩點之間的距離是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為

1)畫出關(guān)于軸對稱的,并寫出點的坐標   

2)畫出繞原點旋轉(zhuǎn)后得到的,并寫出點的坐標  

3是否為直角三角形?答   (填是或者不是).

4)利用格點圖,畫出邊上的高,并求出的長,   

查看答案和解析>>

同步練習冊答案