如圖,在Rt△ABC中,∠C=90°,點E在斜邊AB上,以AE為直徑的⊙O與BC相切于點D.
(1)求證:AD平分∠BAC.
(2)若AC=3,AE=4.
①求AD的值;②求圖中陰影部分的面積.

【答案】分析:(1)連接DE,OD.利用弦切角定理,直徑所對的圓周角是直角,等角的余角相等證明∠DAO=∠CAD,進(jìn)而得出結(jié)論;
(2)由三角形相似可以算出AD,陰影部分的面積等于扇形的面積-三角形的面積.
解答:(1)證明:連接DE,OD.
∵BC相切⊙O于點D,
∴∠CDA=∠AED.(1分)
AE為直徑,∠ADE=90°,
AC⊥BC,∠ACD=90°,
∴∠DAO=∠CAD,
∴AD平分∠BAC.

(2)解:①∵AE為直徑,
∴∠ADE=∠C=90°.
又由(1)知∠DAO=∠CAD,
∴△ADE∽△ACD,
,
∵AC=3,AE=4,
,

②在Rt△ADE中,,
∴∠DAE=30°.
∴∠AOD=120°,DE=2.
==,
∴S陰影=S扇形AOD-S△AOD=
點評:本題主要考查扇形面積的計算和弦切角定理,三角形相似的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案