【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點,與軸交于點.

1)求=______,=______;

2)根據(jù)函數(shù)圖象可知,當(dāng)時,的取值范圍是____________.

3)求

【答案】1,;(2;(312.

【解析】

1)由AB為一次函數(shù)與反比例函數(shù)的交點,將B坐標(biāo)代入反比例函數(shù)解析式中,求出k2的值,確定出反比例解析式,將B坐標(biāo)代入一次函數(shù)解析式中即可求出k1的值;
2)將A的坐標(biāo)代入反比例解析式中求出m的值,確定出A的坐標(biāo),由圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時x的范圍即可;
3)利用三角形的面積公式,根據(jù)SAOB=SAOC+SBO即可求出三角形AOB的面積.

解:(1) )∵一次函數(shù)y1=k1x+2與反比例函數(shù)y2=的圖象交于點A4m)和B-8,-2),
k2=-8×-2=16-2=-8k1+2,
k1=;

故答案為:;

(2) A4,m)代入y=得,m==4,
A4,4),
∵一次函數(shù)y1=k1x+2與反比例函數(shù)y2=的圖象交于點A4,4)和B-8,-2),
∴當(dāng)y1y2時,x的取值范圍是-8x0x4,

故答案為:

(3)(1)知,,,

的坐標(biāo)是,點的坐標(biāo)為

,

=12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王先生到泉州臺商投資區(qū)行政服務(wù)中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作﹣1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下:(單位:層)

+6,﹣3,+10,﹣8+12,﹣7,﹣10

1)請你通過計算說明王先生最后是否回到出發(fā)點1樓.

2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.1度,根據(jù)王先生現(xiàn)在所處位置,請你算算,他辦事時電梯需要耗電多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1S2.已知小長方形紙片的長為a,寬為b,且a>b.當(dāng)AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1S2的差總保持不變,則a,b滿足的關(guān)系是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陸老師去水果批發(fā)市場采購蘋果,他看中了A,B兩家蘋果,這兩家蘋果品質(zhì)一樣,零售價都我6/千克,批發(fā)價各不相同.

A家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量不超過2000千克,按零售價的90%優(yōu)惠;超過2000千克的按零售價的88%優(yōu)惠.

B家的規(guī)定如下表:

數(shù)量范圍(千克)

0500部分 

500以上~1500

1500以上~2500部分

2500以上部分 

價格補貼

零售價的95%

零售價的85%

零售價的75%

零售價的70%

1)如果他批發(fā)700千克蘋果,則他在A、B兩家批發(fā)分別需要多少元?

2)如果他批發(fā)x千克蘋果(1500x2000),請你分別用含x的代數(shù)式表示他在A、B兩家批發(fā)所需的費用;

3AB兩店在互相競爭中開始了互懟,BA店的蘋果總價有不合理的,有時候買的少反而貴,忽悠消費者;AB的總價計算太麻煩,把消費者都弄糊涂了;旁邊陸老師聽完,提出兩個問題希望同學(xué)們幫忙解決:

問題1:能否舉例說明A店買的多反而便宜?

問題2B店老板比較聰明,在平時工作中發(fā)現(xiàn)有巧妙的方法:總價=購買數(shù)量×單價+價格補貼;

:不同的單價,補貼價格也不同;只需提前算好即可填下表:

數(shù)量范圍(千克)

0500部分 

 500以上~1500

1500以上~2500

2500以上部分 

價格補貼

0

300

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動點P在函數(shù)x0的圖象上運動,PMx軸于點M,PNy軸于點N,線段PMPN分別與直線ABy=x+1交于點E,FAFBE的值為(  )

A. 4 B. 2 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,P是對角線AC上的動點,連接DP,將直線DP繞點P順時針旋轉(zhuǎn)使∠DPG=DAC,且過DDGPG,連接CG,則CG最小值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點A從原點出發(fā)向數(shù)軸負(fù)方向運動,同時動點B也從原點出發(fā)向數(shù)軸正方向運動,2秒后,兩點相距16個單位長度,已知動點A、B的速度比為1:3(速度單位:1個單位長度秒).

(1)求兩個動點運動的速度;

(2)在數(shù)軸上標(biāo)出A、B兩點從原點出發(fā)運動2秒時的位置;

(3)若表示數(shù)0的點記為O,A、B兩點分別從(2)中標(biāo)出的位置同時向數(shù)軸負(fù)方向運動,再經(jīng)過多長時間,滿足OB=2OA?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2,⊙Ol1l2分別相切于點A和點B,點M和點N分別是l1l2上的動點,MN沿l1l2平移,若⊙O的半徑為1,∠1=60°,下列結(jié)論錯誤的是(  )

A. MN= B. MNO相切,則AM=

C. l1l2的距離為2 D. ∠MON=90°,則MN⊙O相切

查看答案和解析>>

同步練習(xí)冊答案