【題目】如圖:在4×4的網(wǎng)格中存在線段AB,每格表示一個(gè)單位長(zhǎng)度,并構(gòu)建了平面直角坐標(biāo)系.
(1)直接寫出點(diǎn)A、B的坐標(biāo):A( , ),B( , );
(2)請(qǐng)?jiān)趫D中確定點(diǎn)C(1,﹣2)的位置并連接AC、BC,則△ABC是 三角形(判斷其形狀);
(3)在現(xiàn)在的網(wǎng)格中(包括網(wǎng)格的邊界)存在一點(diǎn)P,點(diǎn)P的橫縱坐標(biāo)為整數(shù)(在格點(diǎn)上),連接PA、PB后得到△PAB為等腰三角形,則滿足條件的點(diǎn)P有 個(gè).
【答案】(1)0,1,-1,-1;(2)等腰直角;(3)8.
【解析】
(1)根據(jù)平面直角坐標(biāo)系可直接寫出A、B的坐標(biāo);
(2)畫出圖形,利用勾股定理計(jì)算出AB2、CB2、AC2,再利用逆定理證明△ACB是等腰直角三角形;
(3)分別以A、B為圓心,AB長(zhǎng)為半徑畫圓可得P的位置及個(gè)數(shù).
(1)根據(jù)平面直角坐標(biāo)系可得A(0,1),B(-1,-1),
故答案為:0;1;-1;-1;
(2)∵AB2=12+22=5,CB2=12+22=5,AC2=12+32=10,
∴AB2+BC2=AC2,
∴△ACB是等腰直角三角形,
故答案為:等腰直角;
(3)如圖所示:
,
滿足條件的點(diǎn)P有8個(gè),
故答案為:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.垂美四邊形有如下性質(zhì):
垂美四邊形的兩組對(duì)邊的平方和相等.
已知:如圖1,四邊形ABCD是垂美四邊形,對(duì)角線AC、BD相交于點(diǎn)E.
求證:AD2+BC2=AB2+CD2
證明:∵四邊形ABCD是垂美四邊形
∴AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2.
拓展探究:
(1)如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)如圖3,在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;
問題解決:
如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.求GE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市初三學(xué)生的體育測(cè)試成績(jī)和課外體育鍛煉時(shí)間的情況,現(xiàn)從全市初三學(xué)生體育測(cè)試成績(jī)中隨機(jī)抽取200名學(xué)生的體育測(cè)試成績(jī)作為樣本.體育成績(jī)分為四個(gè)等次:優(yōu)秀、良好、及格、不及格.
體育鍛煉時(shí)間 | 人數(shù) |
4≤x≤6 |
|
2≤x<4 | 43 |
0≤x<2 | 15 |
(1)試求樣本扇形圖中體育成績(jī)“良好”所對(duì)扇形圓心角的度數(shù);
(2)統(tǒng)計(jì)樣本中體育成績(jī)“優(yōu)秀”和“良好”學(xué)生課外體育鍛煉時(shí)間表(如圖表所示),請(qǐng)將圖表填寫完整(記學(xué)生課外體育鍛煉時(shí)間為x小時(shí));
(3)全市初三學(xué)生中有14400人的體育測(cè)試成績(jī)?yōu)椤皟?yōu)秀”和“良好”,請(qǐng)估計(jì)這些學(xué)生中課外體育鍛煉時(shí)間不少于4小時(shí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB上除點(diǎn)A、B外的任意一點(diǎn),分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)請(qǐng)判斷△CMN的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中在“讀書共享月”活動(dòng)中.學(xué)生都從家中帶了圖書到學(xué)校給大家共享閱讀.經(jīng)過抽樣調(diào)查得知,初一人均帶了2冊(cè);初二人均帶了3.5冊(cè):初三人均帶了2.5冊(cè).已知各年級(jí)學(xué)生人數(shù)的扇形統(tǒng)計(jì)圖如圖所示,其中初三共有210名學(xué)生.請(qǐng)根據(jù)以上信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中,初三年級(jí)學(xué)生數(shù)所對(duì)應(yīng)的圓心角為 °;
(2)該初中三個(gè)年級(jí)共有 名學(xué)生;
(3)估計(jì)全校學(xué)生人均約帶了多少冊(cè)書到學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①無(wú)理數(shù)都是無(wú)限小數(shù);
②的算術(shù)平方根是3;
③數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng);
④平方根與立方根等于它本身的數(shù)是0和1;
⑤若點(diǎn)A(-2,3)與點(diǎn)B關(guān)于x軸對(duì)稱,則點(diǎn)B的坐標(biāo)是(-2,-3).
其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)(﹣3.6)+(+2.5)
(2)-﹣(﹣3)﹣2+
(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)
(4)﹣5﹣(﹣11)+2﹣(﹣)
(5)3﹣(﹣)+2+(﹣)
(6)﹣|﹣1|﹣(+2)﹣(﹣2.75)
(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)
(8)(﹣4)﹣(+5)﹣(﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=m(x+3)2+n與y=m(x﹣2)2+n+1交于點(diǎn)A.過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B、C(點(diǎn)B在點(diǎn)C左側(cè)),則線段BC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com