【題目】如圖,AB// CDRt△EFG的頂點(diǎn)F,G分別落在直線(xiàn)ABCD上,GEAB于點(diǎn)HEFG=90°,E=32°

1FGE=    °

2)若GE平分∠FGD,求∠EFB的度數(shù).

【答案】1)∠FGE=58° ;(2)∠EFB=26°.

【解析】

1)由題意利用三角形內(nèi)角和是180°,據(jù)此即可求出∠FGE的度數(shù);

2)根據(jù)題意利用角平分線(xiàn)的性質(zhì)得出∠EGD=FGE=58°,再利用平行線(xiàn)性質(zhì)即可得出∠EFB的度數(shù).

解:(1EFG=90°,∠E=32°,

∠FGE=90°-32°=58°;

2∵GE平分∠FGD,

∴∠EGD=∠FGE=58°

∵AB∥CD,

∴∠EHB=∠EGD=58°

∴∠EFB=∠EHB∠E=26°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),垂足為,已知的面積為

求反比例函數(shù)的解析式;

如圖,點(diǎn)為反比例函數(shù)在第三象限圖象上的點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),垂足為,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一架云梯AB長(zhǎng)25分米,斜靠在一面墻上,梯子底端B離墻7分米.

1)這個(gè)梯子的頂端A距地面有多高?

2)如果梯子頂端下滑了4分米,那么梯子的底端在水平方向滑動(dòng)了多少分米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知ABC中,AB=AC=BC=10厘米,M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度是1厘米/秒的速度,點(diǎn)N的速度是2厘米/秒,當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).

1M、N同時(shí)運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?

2M、N同時(shí)運(yùn)動(dòng)幾秒后,可得等邊三角形AMN?

3M、NBC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰AMN,如果存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,、兩點(diǎn)分別在邊上.,,且四邊形是平行四邊形.

請(qǐng)判斷線(xiàn)段有何數(shù)量關(guān)系?并說(shuō)明理由.

當(dāng)時(shí).請(qǐng)猜想四邊形是什么特殊的平行四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一次函數(shù)為常數(shù))的圖像位于軸下方的部分沿軸翻折到軸上方,和一次函數(shù)為常數(shù))的圖像位于軸及上方的部分組成“”型折線(xiàn),過(guò)點(diǎn)軸的平行線(xiàn),若該“”型折線(xiàn)在直線(xiàn)下方的點(diǎn)的橫坐標(biāo)滿(mǎn)足,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在中,(如圖1),有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論.

2)圖2,在四邊形中,相于點(diǎn),,,求長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABCD是邊長(zhǎng)為1的正方形,O是正方形的中心,Q是邊CD上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)C、D重合),直線(xiàn)AQBC的延長(zhǎng)線(xiàn)交于點(diǎn)E,AEBD于點(diǎn)P.設(shè)DQ=x.

(1)填空:當(dāng)時(shí),的值為   ;

(2)如圖2,直線(xiàn)EOAB于點(diǎn)G,若BG=y,求y關(guān)于x之間的函數(shù)關(guān)系式;

(3)在第(2)小題的條件下,是否存在點(diǎn)Q,使得PGBC?若存在,求x的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點(diǎn),MN垂直平分BE,分別交ADBE,BC于點(diǎn)MO,N,連接BM,EN

(1)求證:四邊形BMEN是菱形.

(2)AE8,FAB的中點(diǎn),BF+OB8,求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案