【題目】假期,某校為了勤工儉學(xué),要完成整個A小區(qū)的綠化工作,開始由七年級單獨工作了4天,完成整個綠化工作的三分之一,這時九年級也參加工作,兩個年級又共同工作了2天,才全部完成整個綠化工作,則由九年級單獨完成整個綠化工作需要____.

【答案】4

【解析】

根據(jù)題意可求出七年級單獨完成工作需要的天數(shù),設(shè)九年級單獨完成整個綠化工作需要x天,由兩個年級又共同工作了2天,才全部完成整個綠化工作,根據(jù)工作效率×時間=工作總量的等式,列方程求出x值即可得答案.

設(shè)設(shè)九年級單獨完成整個綠化工作需要x天,

∵七年級單獨工作了4天,完成整個綠化工作的三分之一,

∴七年級單獨完成工作需要=12(天),

根據(jù)題意得:+=1-

解得:x=4,

經(jīng)檢驗:x=4是原分式方程的解,

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[探究]如圖,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與ABCD交于點E、G.

(1)若∠AFH=60°,∠CHF=50°,則∠EOF= °,∠ FOH= °

(2)若∠AFH+CHF= 100°,求∠FOH的度數(shù).

(3)當(dāng)∠FOH=_____ ° ,AB//CD.

[拓展]如圖,∠AFH和∠CHI的平分線交于點OEG經(jīng)過點O且平行于FH,分別與AB,CD交于點E、G.若∠AFH+CHF=a,求∠FOH的度數(shù). (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點A,B在數(shù)軸上的位置如圖所示,其對應(yīng)的數(shù)分別是a和b,對于以下結(jié)論:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正確的是( )

A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正方形OABC如圖放置,O為原點.若∠α=15°,則點B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,解答下面的問題:

我們知道方程有無數(shù)個解,但在實際生活中我們往往只需求出其

正整數(shù)解.

例:由,得:,(x、y為正整數(shù))

,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為

問題:

(1)請你寫出方程的一組正整數(shù)解:      .

(2)若為自然數(shù),則滿足條件的x值為      .

(3)七年級某班為了獎勵學(xué)習(xí)進步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和直線BC相交于點B,連接AC,點DE、H分別在ABAC、BC上,連接DE、DHFDH上一點,已知∠1+3=180°.

(1)求證:CEF=EAD;

(2)DH平分∠BDE,∠2=求∠3的度數(shù)(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點叫做整點.已知點A(0,4),點B是x軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當(dāng)點B的橫坐標(biāo)為4時,m的值是_____.當(dāng)點B的橫坐標(biāo)為4n(n為正整數(shù))時,m=_____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,折疊矩形ABCD,使點B落在對角線AC上的點F處,若BC8,AB6,則線段CE的長度是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=90°AB分別在線段OM、ON(不與點O重合),BC是∠ABN的平分線,BC的反向延長線與∠BAO的平分線交于點D.

(1)若∠BAO=60°,求∠ABC和∠D的度數(shù).

(2)若∠BAO=°,求∠ABC和∠D的度數(shù).

(3)若△ABD中有一個角是另一個角的3倍,直接寫出此時∠ABC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案