如圖,拋物線y=x2-2x-3交x軸于A、B,交y軸于C,若在此拋物線上存在P,使△PAC的內(nèi)心在x軸上,則點P的坐標為______.
y=0時,A(-1,0),B(3,0)
x=0時,C(0,-3)
∵三角形的內(nèi)心在x軸上
∴∠PAB=∠BAC
作PD⊥x軸于D,設(shè)P(x,y)
∴AD=x+1,PD=y
∵tan∠CAO=3
∴tan∠BAP=3
∴y=3(x+1)
∵y=x2-2x-3
解得:x=6或x=-1(不符合題意,應(yīng)舍去).
當x=6時,y=21,∴點P的坐標為(6,21).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+px+q與x軸交于A、B兩點,且過點(-1,-1),設(shè)線段AB的長為d.
(1)用含有p的式子表示q.
(2)求d2與p的關(guān)系式.
(3)當p為何值時,d2取得最小值,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若二次函數(shù)y=-x2+2(m-1)x+2m-m2的圖象關(guān)于y軸對稱,則m的值為:______.此函數(shù)圖象的頂點和它與x軸的兩個交點所確定的三角形的面積為:______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,要設(shè)計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向通道,上下底之間有兩條縱向通道,各通道的寬度相等.設(shè)通道的寬為x米.
(1)用含x的式子表示橫向通道的面積;
(2)當三條通道的面積是梯形面積的八分之一時,求通道的寬;
(3)根據(jù)設(shè)計的要求,通道的寬不能超過8米.如果修建通道的總費用(萬元)與通道的寬度成正比例關(guān)系,比例系數(shù)是5.5,花壇其余部分的綠化費用為每平方米0.02萬元,那么當通道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

是否存在這樣的實數(shù)k,使得二次方程x2+(2k-1)x-(3k+2)=0有兩個實數(shù)根,且兩根都在2與4之間?如果有,試確定k的取值范圍;如果沒有,試述理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的解析式為y=-x2+2x+1.
(1)寫這個二次函數(shù)圖象的對稱軸和頂點坐標,并求圖象與x軸的交點坐標;
(2)在給定的坐標系中畫出這個二次函數(shù)大致圖象,并求出拋物線與坐標軸的交點所組成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+3x與x軸交于A、B兩點,在x軸上方的拋物線上存在一點P,使△PAB的面積等于3,
(1)求A、B兩點的坐標;
(2)求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

利用函數(shù)圖象求得方程x2+x-12=0的解是x1=______,x2=______.

查看答案和解析>>

同步練習冊答案