是否存在這樣的實數(shù)k,使得二次方程x2+(2k-1)x-(3k+2)=0有兩個實數(shù)根,且兩根都在2與4之間?如果有,試確定k的取值范圍;如果沒有,試述理由.
這樣的k值不存在,理由如下:設(shè)y=f(x)=x2+(2k-1)x-(3k+2)并作出如圖所示圖象,則
△=(2k-1)2+4(3k+2)>0
f(2)=4+2(2k-1)-(3k+2)>0
f(4)=16+4(2k-1)-(3k+2)>0
2<-
b
2a
=-k+
1
2
<4
,
整理得,
4k2+8k+9>0①
k>0②
k>-2③
k>-
7
2
k<-
3
2

由②⑤可知,此不等式組無解,故k值不存在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,AO=8,AB=AC,sin∠ABC=
4
5
.CD與y軸交于點E,且S△COE=S△ADE.已知經(jīng)過B,C,E三點的圖象是一條拋物線,求這條拋物線對應(yīng)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的y與x的部分對應(yīng)值如下表:
x-1012
y-5131
則下列判斷中正確的是( 。
A.該函數(shù)圖象開口向上
B.該函數(shù)圖象與y軸交于負(fù)半軸
C.方程ax2+bx+c=0的正根在1與2之間
D.方程ax2+bx+c=0的正根在2與3之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司積極應(yīng)對2008年世界金融危機(jī),及時調(diào)整投資方向生產(chǎn)新產(chǎn)品,由于新產(chǎn)品開發(fā)初期成本高,且市場占有率不高等因素的影響,產(chǎn)品投產(chǎn)上市一年來,公司經(jīng)歷了由初期的虧損到后來逐步盈利的過程(公司對經(jīng)營的盈虧情況每月最后一天結(jié)算1次),公司累積獲得的利潤y(萬元)與銷售時間x(月)之間的函數(shù)關(guān)系(即前x個月的利潤總和y與x之間的關(guān)系)如圖所示,其中曲線OAB為拋物線的一部分,點A為該拋物線的頂點,BC是線段.
(1)求該公司累積獲得的利潤y(萬元)與時間x(月)之間的函數(shù)關(guān)系式;
(2)直接寫出x月份所獲得的利潤w(萬元)與時間x(月)之間的函數(shù)關(guān)系式;
(3)前12個月中,幾月份該公司所獲得的利潤最多?最多利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,己知二次函數(shù)y=-
1
2
x2+4x-6的圖象與x軸、y軸分別交于點A、B兩點.
(1)求A,B兩點的坐標(biāo);
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連結(jié)BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點,且A,B兩點間的距離為d,例如,通過研究其中一個函數(shù)y=x2-5x+6及圖象(如圖),可得出表中第2行的相關(guān)數(shù)據(jù).
(1)在表內(nèi)的空格中填上正確的數(shù);
(2)根據(jù)上述表內(nèi)d與△的值,猜想它們之間有什么關(guān)系?再舉一個符合條件的二次函數(shù),驗證你的猜想;
(3)對于函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一種不同于(3)的正確證明嗎?我們將對你的出色表現(xiàn)另外獎勵3分.
y=x2+px+qpqx1x2d
y=x2-5x+6-561231
y=x2-
1
2
x
-
1
2
1
4
1
2
y=x2+x-2-2-23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=x2-2x-3交x軸于A、B,交y軸于C,若在此拋物線上存在P,使△PAC的內(nèi)心在x軸上,則點P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x-2-1012
y04664
從上表可知,下列說法中正確的是______.(填寫序號)
①拋物線與x軸的一個交點為(3,0);②函數(shù)y=ax2+bx+c的最大值為6;
③拋物線的對稱軸是直線x=
1
2
;   ④在對稱軸左側(cè),y隨x增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-ax2+2ax+m的部分圖象如圖所示,則一元二次方程ax2-2ax-m=0的根為______.

查看答案和解析>>

同步練習(xí)冊答案