【題目】如圖,在RtABC中,∠C90°(ACBC),用尺規(guī)作圖的方法作線段AD,保留作圖痕跡如圖所示,認真觀察作圖痕跡,若CD4,BD5,則AC的長為( 。

A.6B.9C.12D.15

【答案】C

【解析】

由作法得AD平分∠BAC,作DHABD,如圖,根據(jù)角平分線的性質(zhì)得DHDC4,利用勾股定理計算出BH3,再利用勾股定理得到ACAH,設(shè)ACx,則ABx+2,則x2+92=(x+32,然后解方程即可.

解:由作法得AD平分∠BAC,

DHABD,如圖,則DHDC4

RtBDH中,BH3(勾股定理),

AC2AD2CD2,AH2AD2DH2

ACAH,

設(shè)ACx,則ABx+3,

RtABC中,x2+92=(x+32,解得x12

AC的長為12

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】12020326日全國新冠疫情數(shù)據(jù)表,圖2328日海外各國疫情統(tǒng)計表,圖3是中國和海外的病死率趨勢對比圖,根據(jù)這些圖表,選出下列說法中錯誤的一項(

A.1顯示每天現(xiàn)有確診數(shù)的增加量=累計確診增加量-治愈人數(shù)增加量-死亡人數(shù)增加量.

B.2顯示美國累計確診人數(shù)雖然約是德國的兩倍,但每百萬人口的確診人數(shù)大約只有德國的一半.

C.2顯示意大利當前的治愈率高于西班牙.

D.3顯示大約從316日開始海外的病死率開始高于中國的病死率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是⊙O的直徑,A是弦BD延長線上一點,切線DE平分ACE

1)求證:AC是⊙O的切線;

2)若ADDB=32,AC=15,求⊙O的直徑;

3)在(2)的條件下,求的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:

分別以點C和點D為圓心,大于的同樣的長為半徑作弧,兩弧交于MN兩點;

作直線MN,交CD于點E,連接BE

若直線MN恰好經(jīng)過點A,則下列說法錯誤的是(  )

A.ABC60°

B.

C.AB4,則BE

D.tanCBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y軸交于點A,它的頂點為點B

1)點A的坐標為______,點B的坐標為______(m表示);

2)已知點M(-64),點N(3,4),若拋物線與線段MN恰有一個公共點,結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,于點,于另一點

1)求證:;

2)若上一動點,則

①當 時,以,,,為頂點的四邊形是正方形;

②當 時,以,,為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過點,.把拋物線與線段圍成的封閉圖形記作

1)求此拋物線的解析式;

2)點為圖形中的拋物線上一點,且點的橫坐標為,過點軸,交線段于點.當為等腰直角三角形時,求的值;

3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當,兩點中只有一個點在圖形的內(nèi)部時,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學實踐小組想利用鏡子的反射測量池塘邊一棵樹的高度AB.測量和計算的部分步驟如下:

①如圖,樹與地面垂直,在地面上的點C處放置一塊鏡子,小明站在BC的延長線上,當小明在鏡子中剛好看到樹的頂點A時,測得小明到鏡子的距離CD2米,小明的眼睛E到地面的距離ED1.5米;

②將鏡子從點C沿BC的延長線向后移動10米到點F處,小明向后移動到點H處時,小明的眼睛G又剛好在鏡子中看到樹的頂點A,這時測得小明到鏡子的距離FH3米;

③計算樹的高度AB;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中, 是平面內(nèi)不與點重合的任意一點, 連接,將線段繞點逆時針旋轉(zhuǎn)得到線段,連接

1)動手操作

如圖1,當時,我們通過用 刻度尺和量角器度量發(fā)現(xiàn):

的值是;直線與直線相交所成的較小角的度數(shù)是;

請證明以上結(jié)論正確.

2)類比探究

如圖2,當時,請寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說明理由.

查看答案和解析>>

同步練習冊答案