【題目】下列幾何體中,其主視圖不是中心對稱圖形的是( )
A.
B.
C.
D.

【答案】B
【解析】解:A、主視圖是矩形,矩形是中心對稱圖形,A不符合題意;

B、主視圖是三角形,三角形不是中心對稱圖形,B符合題意;

C、主視圖是圓,圓是中心對稱圖形,C不符合題意;

D、主視圖是正方形,正方形是中心對稱圖形,D不符合題意;

所以答案是:B.

【考點精析】關(guān)于本題考查的常見幾何體的三視圖和中心對稱及中心對稱圖形,需要了解俯視圖放在主視圖的下面,長度與主視圖的長度一樣;左視圖放在主視圖的右面,高度與主視圖的高度一樣,寬度與俯視圖的寬度一樣,可簡記為“長對正;高平齊;寬相等”;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校最近發(fā)布了新的學(xué)生午休方案,為了了解學(xué)生方案的了解程度,小明和小穎一起對該學(xué)校的學(xué)生進行了抽樣調(diào)査,小明將結(jié)果整理后繪制成條形統(tǒng)計圖(如圖)(A代表完全清楚,B代表知道一些C代表,完全不了解):

1)這次抽樣調(diào)查了______人;

2)小穎將調(diào)查結(jié)果繪制成扇形統(tǒng)計圖,那么扇形統(tǒng)計圖中C部分,對應(yīng)的扇形的圓心角是多少度?

3)若該學(xué)校一共有1000名學(xué)生,則根據(jù)此次調(diào)查,完全清楚的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是( )

A. 3分時汽車的速度是40千米/

B. 12分時汽車的速度是0千米/

C. 從第3分到第6分,汽車行駛了120千米

D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示.A、B、C三點在格點上.

(1)作出ABC關(guān)于y軸對稱的A1B1C1,并寫出點C1的坐標   ;

(2)在(1)的條件下,連接CC1AB于點D,請標出點D,并直接寫出CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AEABC的外角∠CAD的平分線.

(1)若AEBC,如圖1,試說明∠BC

(2)若AEBC的延長線于點E,如圖2,直接寫出反應(yīng)∠B、ACB、AEC之間關(guān)系的等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為﹣2,0,4,點P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x

1)如果點P到點MN的距離相等,則x   

2)數(shù)軸上是否存在點P,使點P到點M、點N的距離之和是10?若存在,求出x的值;若不存在,請說明理由.

3)如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點M、點N的距離相等,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光合作用是指綠色植物通過葉綠體,利用光能,把二氧化碳和水轉(zhuǎn)化成儲存能量的有機物,并釋放出氧氣的過程.如圖是夏季的白天7時~18時的一般的綠色植物的光合作用強度與時間之間的關(guān)系的曲線,分析圖象回答問題:

(1)大約幾時的光合作用最強?大約幾時的光合作用最弱?

(2)說一說綠色植物光合作用的強度從7時到18時是怎樣變化的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是雙曲線y= 在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰Rt△ABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=15,AC=13BC邊上的高AD=12,則BC的長為________

查看答案和解析>>

同步練習(xí)冊答案