【題目】如圖,在斜邊長(zhǎng)為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3;……;依次作下去,則第n個(gè)正方形AnBnCnDn的邊長(zhǎng)是________

【答案】

【解析】

過(guò)OOM垂直于AB,交AB于點(diǎn)M,交A1B1于點(diǎn)N,由三角形OAB與三角形OA1B1都為等腰直角三角形,得到MAB的中點(diǎn),NA1B1的中點(diǎn),根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得出OMAB的一半,由AB1求出OM的長(zhǎng),再由ONA1B1的一半,即為MN的一半,可得出ONOM的比值,求出MN的長(zhǎng),即為第1個(gè)正方形的邊長(zhǎng),同理求出第2個(gè)正方形的邊長(zhǎng),依此類推即可得到第n個(gè)正方形的邊長(zhǎng).

解:過(guò)OOMAB,交AB于點(diǎn)M,交A1B1于點(diǎn)N,如圖所示:

∵正方形A1B1C1D1,

A1B1AB,∴ONA1B1,
∵△OAB為斜邊為1的等腰直角三角形,
OMAB
又∵△OA1B1為等腰直角三角形,
ONA1B1MN,
ONOM13

ON=OM=,
∴第1個(gè)正方形的邊長(zhǎng)A1C1MNOM×,
同理第2個(gè)正方形的邊長(zhǎng)A2C2ON×,
則第n個(gè)正方形AnBnDnCn的邊長(zhǎng)

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,點(diǎn)E是對(duì)角線BD上一點(diǎn),點(diǎn)QAD邊上一點(diǎn),BQAE于點(diǎn)P,∠ABQ=DAE,點(diǎn)FAB邊的中點(diǎn).

1)當(dāng)四邊形ABCD是正方形時(shí),如圖(1).

①若BE=BA,求證:△ABP≌△EBP;

②若BE=4DE,求證:AF2=AQ·AD

2)當(dāng)四邊形ABCD是矩形時(shí),如圖(2),連接FQ,FD.若BE=4DE,求證:∠AFQ=ADF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) yax2+bx+ca≠0)的圖象如圖所示,對(duì)稱軸是直線 x=1,下列結(jié)論:ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是(

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,BC=10,AB=,∠ABC=30°,點(diǎn)P在直線AC上,點(diǎn)P到直線AB的距離為1,則CP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,平分,若,,則線段的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線l上是否存在點(diǎn)M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中量角器零刻度線的端點(diǎn)N與點(diǎn)A重合,射線CPCA處出發(fā)沿順時(shí)針?lè)较蛞悦棵?/span>4度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點(diǎn)E,第18秒時(shí),點(diǎn)E在量角器上對(duì)應(yīng)的讀數(shù)是__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,為線段上一動(dòng)點(diǎn),且不與點(diǎn)重合,過(guò)點(diǎn)于點(diǎn),將沿折疊,點(diǎn)落在直線上點(diǎn)處,連接、,當(dāng)為等腰三角形時(shí),的長(zhǎng)是_________

查看答案和解析>>

同步練習(xí)冊(cè)答案