【題目】如圖,在△ABC中,AB=AC=10,∠B=30°,O是線段AB上的一個動點,以O為圓心,OB為半徑作⊙O交BC于點D,過點D作直線AC的垂線,垂足為E.
(1)求證:DE是⊙O的切線;
(2)設(shè)OB=x,求∠ODE的內(nèi)部與△ABC重合部分的面積y的最大值.
【答案】(1)證明見解析;
(2)①當(dāng)x=時,S△ODF最大,最大值為;②當(dāng)x=6時,重合部分的面積最大,最大值為10.
【解析】試題分析:(1)由等腰三角形的性質(zhì)可得∠C=∠B,∠ODB=∠C,從而∠ODB=∠C,根據(jù)同位角相等兩直線平行可證OD∥AC,進(jìn)而可證明結(jié)論;(2)①當(dāng)點E在CA的延長線上時,設(shè)DE與AB交于點F,圍成的圖形為△ODF; ②當(dāng)點E在線段AC上時,圍成的圖形為梯形AODE.根據(jù)三角形和梯形的面積公式列出函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求解.
證明:(1)連接OD,
∵AB=AC,
∴∠C=∠B.
∵OB=OD,
∴∠ODB=∠B
∴∠ODB=∠C
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線.
(2)①當(dāng)點E在CA的延長線上時,設(shè)DE與AB交于點F,圍成的圖形為△ODF.
∵OD= OB= x,∠B=30°,∴∠FOD=60°,
∵∠ODE=90°,∴DF= x,
∴S△ODF= x·x= x,(0<x≤)
當(dāng)x=時,S△ODF最大,最大值為;
②當(dāng)點E在線段AC上時,圍成的圖形為梯形AODE.
∵AB=AC=10,∠B=30°,∴BC=10,
作OH⊥BC,∵OD= OB= x,∠B=30°,
∴BD= 2BH= x,∴CD= 10x,
∵∠C=30°,∠DEC=90°,
∴DE= (10-x),CE= (10-x)=15-x,∴AE=x-5,
∴S梯形AODE= (x-5+ x)· (10-x)= (-x+12 x-20) (<x<10)
當(dāng)x=6時,S梯形AODE最大,最大值為10;
綜上所述,當(dāng)x=6時,重合部分的面積最大,最大值為10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=,D是BC的中點,將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點E,連接DE,則點G的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是5,可發(fā)現(xiàn)第1次輸出的結(jié)果是16,第2次輸出的結(jié)果是8,(第3次輸出的結(jié)果是4,依次繼續(xù)下去,第101次輸出的結(jié)果是( )
A.1B.2C.4D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:O是直線AB上的一點,是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)若AC=9,CE=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是三角形 內(nèi)一點,射線PD//AC ,射線PB//AB .
(1)當(dāng)點D,E分別在AB,BC 上時,
①補(bǔ)全圖1:
②猜想 與 的數(shù)量關(guān)系,并證明;,
(2)當(dāng)點都在線段上時,請先畫出圖形,想一想你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點,與軸交于點,且與正比例函數(shù)的圖象交于點.
(1)求一次函數(shù)的解析式;
(2)點在軸上,當(dāng)最小時,求出點的坐標(biāo);
(3)若點是直線上一點,點是平面內(nèi)一點,以、、、四點為頂點的四邊形是矩形,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小紅玩拋硬幣游戲,連續(xù)拋兩次.小明說:“如果兩次都是正面,那么你贏;如果兩次是一正一反,則我贏.”小紅贏的概率是__________,據(jù)此判斷該游戲__________(填“公平”或“不公平”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com