【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是ts.過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)用t的代數(shù)式表示:AE= ;DF= ;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
【答案】(1)2t,2t;(2)當(dāng)t=10時,AEFD是菱形;(3)當(dāng)t=s或12s時,△DEF是直角三角形.
【解析】試題分析:
(1)由已知易得∠C=30°,∠DFC=90°,這樣結(jié)合已知條件即可得到:DF=CD=2t,AE=2t;
(2)由(1)可知,AE=DF,結(jié)合AE∥DF可得四邊形AEFD是平行四邊形,由此可得當(dāng)AD=AE,即60-4t=2t時,四邊形AEFD是菱形,解此關(guān)于t的方程即可求得對應(yīng)的t的值;
(3)如圖1和圖2,根據(jù)題意分∠EDF=90°和∠DEF=90°兩種情況結(jié)合已知條件分析、計(jì)算即可得到對應(yīng)的t的值.
試題解析:
(1)∵直角△ABC中,∠C=90°﹣∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=CD=2t,
故答案為:2t,2t;
(2)∵DF⊥BC
∴∠CFD=90°
∵∠B=90°
∴∠B=∠CFD
∴DF∥AB,
由(1)得:DF=AE=2t,
∴四邊形AEFD是平行四邊形,
當(dāng)AD=AE時,四邊形AEFD是菱形,
即60﹣4t=2t,
解得:t=10,
即當(dāng)t=10時,AEFD是菱形;
(3)分兩種情況:
①當(dāng)∠EDF=90°時,如圖1,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t=60﹣4t,
∴t=
②當(dāng)∠DEF=90°時,如圖2,DE⊥EF,
∵四邊形AEFD是平行四邊形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=AE,
∴60﹣4t=t,
解得t=12.
綜上所述,當(dāng)t=s或12s時,△DEF是直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長線上一點(diǎn),M是線段OB上一動點(diǎn)(不包括O、B),做MN⊥DM,垂足為M,交∠CBE的平分線于點(diǎn)N.
(1)求點(diǎn)C的坐標(biāo);
(2)求證:MD=MN;
(3)如圖(2),連接DN交BC于F,連接FM,探究線段MF、CF、OM之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
圖(1) 圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動,它從A處出發(fā)看望B、C、D處的其它甲蟲.規(guī)定:向上向右走為正,向下向左走為負(fù),如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4).其中第一數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲的行走路線為A→B→C→D,請計(jì)算該甲蟲走過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=2,AC= ,∠BAC=105°,△ABD,△ACE,△BCF都是等邊三角形,則四邊形AEFD的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)中y=ax2+bx﹣3的x、y滿足表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | m | … |
(1)求該二次函數(shù)的解析式;
(2)求m的值并直接寫出對稱軸及頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場同時購進(jìn)甲、乙兩種商品共件,其進(jìn)價和售價如右表,設(shè)其中甲種商品購進(jìn)件.
(1)直接寫出購進(jìn)乙種商品的件數(shù);(用含的代數(shù)式表示)
(2)若設(shè)該商場售完這件商品的總利潤為元.
①求與的函數(shù)關(guān)系式;
②該商品計(jì)劃最多投入元用于購買這兩種商品,則至少要購進(jìn)多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線段AB的延長線上,求證:EA=EC;
(2)若點(diǎn)P在線段AB上.如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時,判斷△ACE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料
勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.
先做四個全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.
由圖1可以得到,
整理,得.
所以.
如果把圖1中的四個全等的直角三角形擺成圖2所示的正方形,
請你參照上述證明勾股定理的方法,完成下面的填空:
由圖2可以得到 ,
整理,得 ,
所以 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個八角星形紙板,圖中有八個直角、八個相等的鈍角,每條邊都相等,如圖2將紙板沿虛線進(jìn)行切割,無縫隙無重疊的拼成如圖3所示的大正方形,其面積為8+4 ,則圖3中線段AB的長為( )
A.
B.2
C. ﹣1
D. +1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com