【題目】如圖,在平面直角坐標系中,直線y=﹣x+2分別交x軸、y軸于點A、B.點C的坐標是(﹣1,0),拋物線y=ax2+bx﹣2經(jīng)過A、C兩點且交y軸于點D.點P為x軸上一點,過點P作x軸的垂線交直線AB于點M,交拋物線于點Q,連結(jié)DQ,設(shè)點P的橫坐標為m(m≠0).
(1)求點A的坐標.
(2)求拋物線的表達式.
(3)當以B、D、Q,M為頂點的四邊形是平行四邊形時,求m的值.
【答案】(1)點A坐標為(4,0);(2)y=x2﹣x﹣2;(3)m=2或1+或1﹣.
【解析】
(1)直線y=﹣x+2中令y=0,即可求得A 點坐標;
(2)將A、C坐標代入,利用待定系數(shù)法進行求解即可;
(3)先求出BD的長,用含m的式子表示出MQ的長,然后根據(jù)BD=QM,得到關(guān)于m的方程,求解即可得.
(1)令y=﹣x+2=0,解得:x=4,
所以點A坐標為:(4,0);
(2)把點A、C坐標代入二次函數(shù)表達式,得
,
解得:,
故:二次函數(shù)表達式為:y=x2﹣x﹣2;
(3)y=﹣x+2中,令x=0,則y=2,故B(0,2),
y=x2﹣x﹣2中,令x=0,則y=-2,故D(0,-2),
所以BD=4,
設(shè)點M(m,﹣m+2),則Q(m,m2﹣m﹣2),
則MQ=|(m2﹣m﹣2)-(﹣m+2)|=|m2﹣m﹣4|
以B、D、Q,M為頂點的四邊形是平行四邊形時,
則:|MQ|=BD=4,
即|m2﹣m﹣4|=4,
當m2﹣m﹣4=-4時,
解得:m=2或m=0(舍去);
當m2﹣m﹣4=4時,
解得m=1±,
故:m=2或1+或1-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,OA=4,點C為弧AB的中點,D為半徑OA上一點,點A關(guān)于直線CD的對稱點為E,若點E落在半徑OA上,則OE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王電子產(chǎn)品專柜以20元/副的價格批發(fā)了某新款耳機,在試銷的60天內(nèi)整理出了銷售數(shù)據(jù)如下
銷售數(shù)據(jù)(第x天) | 售價(元) | 日銷售量(副) |
1≤x<35 | x+30 | 100﹣2x |
35≤x≤60 | 70 | 100﹣2x |
(1)若試銷階段每天的利潤為W元,求出W與x的函數(shù)關(guān)系式;
(2)請問在試銷階段的哪一天銷售利潤W可以達到最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,點從點出發(fā)向點移動,速度為每秒1個單位長度,點從點出發(fā)向點移動,速度為每秒2個單位長度. 兩點同時出發(fā),且其中的任何一點到達終點后,另一點的移動同時停止.
(1)若兩點的運動時間為,當為何值時,?
(2)在(1)的情況下,猜想與的位置關(guān)系并證明你的結(jié)論.
(3)①如圖2,當時,其他條件不變,若(2)中的結(jié)論仍成立,則_________.
②當,時,其他條件不變,若(2)中的結(jié)論仍成立,則_________(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】向陽中學(xué)為了解全校學(xué)生利用課外時間閱讀的情況,調(diào)查者隨機抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計表(圖).根據(jù)圖表信息,解答下列問題:
頻率分布表
閱讀時間(小時) | 頻數(shù)(人) | 頻率 |
1≤x<2 | 9 | 0.15 |
2≤x<3 | a | m |
3≤x<4 | 18 | 0.3 |
4≤x<5 | 12 | n |
5≤x<6 | 6 | 0.1 |
合計 | b | 1 |
(1)填空:a= ,b= ,m= ,n= ;
(2)將頻數(shù)分布直方圖補充完整;
(3)閱讀時間不低于5小時的6人中,有2名男生、4名女生.現(xiàn)從這6名學(xué)生中選取兩名同學(xué)進行讀書宣講,求選取的兩名學(xué)生恰好是兩名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:四邊形ADCF是菱形;
(2)若AC=12,AB=16,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月,我市某中學(xué)舉行了“愛我中國朗誦比賽”活動,根據(jù)學(xué)生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學(xué)生共有 人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= ,n= ;C等級對應(yīng)扇形有圓心角為 度;
(3)學(xué)校欲從獲A等級的學(xué)生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖,在中,,點分別在邊上,連接點分別為的中點,則與的數(shù)量關(guān)系是: .
探究:把繞點順時針方向旋轉(zhuǎn),如圖,連接
證明:
的度數(shù)為 _
應(yīng)用:把繞點在平面內(nèi)自由旋轉(zhuǎn),若面積的最大值為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com