【題目】A、B兩城由筆直的鐵路連接,動車甲從A向B勻速前行,同時動車乙從B向A勻速前行,到達目的地時停止,其中動車乙速度較快,設甲乙兩車相距y(km),甲行駛的時間為t(h),y關于t的函數(shù)圖象如圖所示.
(1)填空:動車甲的速度為(km/h),動車乙的速度為(km/h);
(2)求圖中點P的坐標,并解釋該點坐標所表示的實際意義;
(3)兩車何時相距1200km?

【答案】
(1);320
(2)解:由題意可得,

點P的橫坐標為:1600÷320=5,縱坐標為: = ,

即點P的坐標為(5, ),

該點坐標表示的實際意義是此時動車乙到達目的地,動車甲魚動車乙的距離為 km;


(3)解:由題意可得,

當相遇前相遇1200km,此時的時間為: =0.75h,

當相遇后相遇1200km,由(2)知,當動車乙到達目的地時兩車相距 ,

故此時的時間為: h,

即兩車在0.75h和 h相距1200km.


【解析】(1)動車甲的速度= = km/h,動車乙的速度,= =320km/h;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為24厘米.甲、乙兩動點同時從頂點A出發(fā),甲以2厘米/秒的速度沿正方形的邊按順時針方向移動,乙以4厘米/秒的速度沿正方形的邊按逆時針方向移動,每次相遇后甲乙的速度均增加1厘米/秒且都改變原方向移動,則第四次相遇時甲與最近頂點的距離是______厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中射線l1l2分別表示甲、乙兩人所走路程s(千米)與時間t(小時)之間的關系.

下列說法:

①乙晚出發(fā)1小時;

②乙出發(fā)3小時后追上甲;

③甲的速度是4千米/小時,乙的速度是6千米/小時;

④乙先到達B地.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是線段AB中點,AD、BC交于點N,連接AC、BD、MC、MD,l=2,3=4.

(1)求證:AMD≌△BMC;

(2)圖中在不添加新的字母的情況下,請寫出除了AMD≌△BMC”以外的所有全等三角形,并選出其中一對進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是一條直線,∠AOC=60°,OD,OE分別是∠AOC和∠BOC的平分線,則圖中互補的角有( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個的圓(∠AOB=90°),芳芳第一次在圖1中畫了一條線,將圖1等分成2份,第二次又加了兩條線,將圖1等分成4份,第三次由加了四條線,將圖1等分成8份,第四次又加了八條線,將圖1等分成16份,如圖2所示,則第n(n>1)次可將圖1等分成_____份,當n=5時,圖1中的每份的角度是_____(用度,分,秒表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A,B在數(shù)軸上對應的實數(shù)分別是a,b,其中a,b滿足|a﹣2|+(b+1)2=0.

(1)求線段AB的長;

(2)點C在數(shù)軸上對應的數(shù)為x,且x是方程x﹣1=x+1的解,在數(shù)軸上是否存在點P,使PA+PB=PC,若存在,求出點P對應的數(shù);若不存在,說明理由;

(3)在(1)和(2)的條件下,點A,B,C同時開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,點B和點C分別以每秒4個單位長度和9個單位長度的速度向右運動,點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,設運動時間為t秒,試探究:隨著時間t的變化,ABBC滿足怎樣的數(shù)量關系?請寫出相應的等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

3﹣=3×;

(﹣)﹣6=(﹣)×6;

(﹣0.5)﹣(﹣1)=(﹣0.5)×(﹣1)

根據(jù)上面這些等式反映的規(guī)律,解答下列問題:

(1)上面等式反映的規(guī)律用文字語言可以描述如下:存在兩個有理數(shù),使得這兩個有理數(shù)的差等于

   

(2)若滿足上述規(guī)律的兩個有理數(shù)中有一個數(shù)是,求另一個有理數(shù);

(3)若這兩個有理數(shù)用字母a、b表示,則上面等式反映的規(guī)律用字母表示為   ;

(4)(3)中的關系式中,字母a、b是否需要滿足一定的條件?若需要,直接寫出字母a、b應滿足的條件;若不需要,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在平面直角坐標系xOy中,點A(-4,0),點B在直線y=x+2A、B兩點間的距離最小時,點B的坐標是(

A. (,) B. (,) C. (-3,-1) D. (-3,)

查看答案和解析>>

同步練習冊答案