【題目】小明和小亮用如圖所示的甲、乙兩個(gè)轉(zhuǎn)盤(甲轉(zhuǎn)盤被分成五個(gè)面積相等的扇形,乙轉(zhuǎn)盤被分成四個(gè)面積相等的扇形)做游戲,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各一次(如果指針恰好在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域?yàn)橹梗?/span>
(1)請(qǐng)你求出甲轉(zhuǎn)盤指針指向偶數(shù)區(qū)域的概率;
(2)若兩次數(shù)字之和為,或時(shí),則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)你用樹狀圖或列表法說說你的理由.
【答案】(1)(甲轉(zhuǎn)盤指南針指向偶數(shù)區(qū)域);(2)這個(gè)游戲?qū)﹄p方不公平.用列表法說理由見解析.
【解析】
(1)根據(jù)題意先得出偶數(shù)的個(gè)數(shù),再根據(jù)概率公式即可得出答案;
(2)列舉出所有情況,看指針?biāo)干刃螀^(qū)域內(nèi)的數(shù)字之和為4,5或6的情況占所有情況的多少即可求得小明贏的概率,進(jìn)而求得小亮的概率,比較即可得出答案.
(1)∵甲轉(zhuǎn)盤共有五個(gè)面積相等的扇形,其中偶數(shù)有2個(gè)扇形面,
∴甲轉(zhuǎn)盤指針指向偶數(shù)區(qū)域的概率是
(2)根據(jù)題意列表如下:
轉(zhuǎn)盤甲 | 1 | 2 | 3 | 4 | 5 |
1 | (1,1)和為2 | (2,1)和為3 | (3,1)和為4 | (4,1)和為5 | (5,1)和為6 |
2 | (1,2)和為3 | (2,2)和為4 | (3,2)和為5 | (4,2)和為6 | (5,2)和為7 |
3 | (1,3)和為4 | (2,3)和為5 | (3,3)和為6 | (4,3)和為7 | (5,3)和為8 |
4 | (1,4)和為5 | (2,4)和為6 | (3,4)和為7 | (4,4)和為8 | (5,4)和為9 |
總共有種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中選到兩次數(shù)字之和為,或的結(jié)果有種
(小明勝)
(小亮勝)
(小明勝)(小亮勝)
所以,這個(gè)游戲?qū)﹄p方不公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過實(shí)驗(yàn)獲得兩個(gè)變量x(x>0),y(y>0)的一組對(duì)應(yīng)值如下表.
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 6 | 2.9 | 2 | 1.5 | 1.2 | 1 |
(1)請(qǐng)畫出相應(yīng)函數(shù)的圖象,并求出函數(shù)表達(dá)式.
(2)點(diǎn)A(x1,y1),B(x2,y2)在此函數(shù)圖象上.若x1<x2,則y1,y2有怎樣的大小關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形中,P是對(duì)角線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、C不重合),連接,將繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到,連接,與交于點(diǎn)E,延長線與(或延長線)交于點(diǎn)F.
(1)連接,證明:;
(2)設(shè),試寫出y關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)x為何值時(shí),;
(3)猜想與的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在矩形中,,垂足是.點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接.
(1)求和的長;
(2)若將沿著射線方向平移,設(shè)平移的距離為(平移距離指點(diǎn)沿方向所經(jīng)過的線段長度).當(dāng)點(diǎn)分別平移到線段上時(shí),直接寫出相應(yīng)的的值.
(3)如圖②,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)角,記旋轉(zhuǎn)中為,在旋轉(zhuǎn)過程中,設(shè)所在的直線與直線交于點(diǎn),與直線交于點(diǎn).是否存在這樣的兩點(diǎn),使為等腰三角形?若存在,求出此時(shí)的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系中,點(diǎn),分別在軸的正半軸和軸的正半軸上.
(1)分別以點(diǎn),,為圓心,為半徑作圓,得到,和,其中是的角內(nèi)圓的是_______;
(2)如果以點(diǎn)為圓心,以為半徑的為的角內(nèi)圓,且與一次函數(shù)圖像有公共點(diǎn),求的取值范圍;
(3)點(diǎn)在第一象限內(nèi),如果存在一個(gè)半徑為且過點(diǎn)的圓為∠EOM的角內(nèi)相切圓,直接寫出∠EOM的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線交正半軸于點(diǎn),將拋物線先向右平移個(gè)單位,再向下平移個(gè)單位得到拋物線,與交于點(diǎn),直線交于點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是拋物線上(含端點(diǎn))間的一點(diǎn),作軸交拋物線于點(diǎn),連按,.當(dāng)的面積為時(shí), 求點(diǎn)的坐標(biāo);
(3)如圖②,將直線向上平移,交拋物線于點(diǎn)、,交拋物線于點(diǎn)、,試判斷的值是否為定值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn):下圖是小明復(fù)習(xí)全等三角形時(shí)遇到的一個(gè)問題并引發(fā)的思考,請(qǐng)幫助小明完成以下學(xué)習(xí)任務(wù).
請(qǐng)根據(jù)小明的思路,結(jié)合圖①,寫出完整的證明過程.結(jié)論應(yīng)用:
(1)如圖②,在四邊形中,,的平分線和的平分線交于邊上點(diǎn).求證:;
(2)在(1)的條件下,如圖③,若,.當(dāng)有一個(gè)內(nèi)角是時(shí),的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的頂點(diǎn),分別在反比例函數(shù)圖象的兩個(gè)分支上,點(diǎn)在反比例函數(shù)的圖象上,軸.當(dāng)的面積最小時(shí),的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)、.
(1)求、滿足的關(guān)系式及的值.
(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com