【題目】如圖,半徑為5A中,弦BC,ED所對(duì)的圓心角分別是BAC,EAD.已知DE=6,BAC+EAD=180°,則弦BC的弦心距等于

【答案】3

【解析】

試題分析:AHBCH,作直徑CF,連結(jié)BF,先利用等角的補(bǔ)角相等得到DAE=BAF,再證明ADE≌△ABF,得到DE=BF=6,由AHBC,根據(jù)垂徑定理得CH=BH,易得AHCBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=3

解:作AHBCH,作直徑CF,連結(jié)BF,如圖,

∵∠BAC+EAD=180°,

BAC+BAF=180°

∴∠DAE=BAF,

=,

DE=BF=6,

AHBC,

CH=BH,

CA=AF,

AHCBF的中位線,

AH=BF=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其對(duì)稱軸與x軸交于點(diǎn)D

1)求二次函數(shù)的解析式及其對(duì)稱軸;

2)若點(diǎn)E是線段BC上的一點(diǎn),過點(diǎn)Ex軸的垂線,垂足為F,且EF=2EC,求點(diǎn)E的坐標(biāo);

3)若點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接PA,PC,設(shè)點(diǎn)P的縱坐標(biāo)為t,當(dāng)∠APC不小于60°時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C

1)求拋物線的解析式;

2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且A、O、DE為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo);

3P是拋物線上的第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)PPMx軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】"桃花流水窅然去,別有天地非人間."桃花園景點(diǎn)2017年三月共接待游客萬人,2018年三月比2017年三月旅游人數(shù)增加5%,已知2017年三月至2019年三月欣賞桃花的游客人數(shù)平均年增長(zhǎng)率為8%,設(shè)2019年三月比2018年三月游客人數(shù)增加,則可列方程為( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明星期天上午800從家出發(fā)到離家36千米的書城買書,他先從家出發(fā)騎公共自行車到公交車站,等了12分鐘的車,然后乘公交車于948分到達(dá)書城(假設(shè)在整個(gè)過程中小明騎車的速度不變,公交車勻速行駛,小明家、公交車站、書城依次在一條筆直的公路旁).如圖是小明從家出發(fā)離公交車站的路程y(千米)與他從家出發(fā)的時(shí)間x(時(shí))之間的函數(shù)圖象,其中線段AB對(duì)應(yīng)的函教表達(dá)式為ykx+6

1)求小明騎公共自行車的速度;

2)求線段CD對(duì)應(yīng)的函數(shù)表達(dá)式;

3)求出發(fā)時(shí)間x在什么范圍時(shí),小明離公交車站的路程不超過3千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,點(diǎn)M為邊AB的中點(diǎn).

(1)如圖1,點(diǎn)G為線段CM上的一點(diǎn),且∠AGB=90°,延長(zhǎng)AG、BG分別與邊BCCD交于點(diǎn)E、F

①求證:BE=CF

②求證:BE2=BCCE

(2)如圖2,在邊BC上取一點(diǎn)E,滿足BE2=BCCE,連接AECM于點(diǎn)G,連接BG并延長(zhǎng)交CD于點(diǎn)F,求tanCBF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線yax2+bx+c經(jīng)過A、B、C10)三點(diǎn).

1)求拋物線的解析式;

2)觀察圖象,寫出不等式ax2+bx+c>﹣x+3的解集為   

3)若點(diǎn)D的坐標(biāo)為(﹣1,0),在直線y=﹣x+3上有一點(diǎn)P,使△ABO與△ADP相似,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意一個(gè)四位數(shù),如果千位與十位上的數(shù)字之和為7,百位與個(gè)位上的數(shù)字之和也為7,那么稱上進(jìn)數(shù)

(1)寫出最小和最大的上進(jìn)數(shù);

(2)一個(gè)上進(jìn)數(shù),若,且使一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,求這個(gè)上進(jìn)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).直線與拋物線同時(shí)經(jīng)過.

1)求的值.

2)點(diǎn)是二次函數(shù)圖象上一點(diǎn),(點(diǎn)下方),過軸,與交于點(diǎn),與軸交于點(diǎn).的最大值.

3)在(2)的條件下,是否存在點(diǎn),使相似?若存在,求出點(diǎn)坐標(biāo),不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案