【題目】乘法公式的探究及應(yīng)用.

數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.

方法1______;方法2______

2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b2a2+b2,ab之間的等量關(guān)系.______

3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)圖形驗(yàn)證:

a+b)(a+2b=a2+3ab+2b2

4)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

【答案】(1) (a+b)2;a2+b2+2ab;(2)(a+b)2=a2+2ab+b2;(3)見(jiàn)解析;(4)①7;②16.

【解析】

1)第一種方法:直接用正方形的面積公式求解;第二種方法將其看做是一個(gè)兩個(gè)正方形和兩個(gè)長(zhǎng)方形,分別求出面積再求和即可.

2)依據(jù)(1)中的代數(shù)式,即可得到所求的關(guān)系;

3)畫出長(zhǎng)為a+2b,寬為a+b的長(zhǎng)方形,即可完成驗(yàn)證;

4)①依據(jù)a+b=5,可得(a+b2=25,進(jìn)而得出a2+b2+2ab=25,再將a2+b2=11,即可得到ab=7;②設(shè)x-2017=a,則x-2016=a+1,x-2018=a-1,依據(jù)(x-20162+x-20182=34,即可得到∴(a+1)2+(a-1)2=34,然后化簡(jiǎn)得a2=16,即可完成解答.

解:(1)圖2大正方形的面積=(a+b)2;圖2大正方形的面積=a2+b2+2ab;

故答案為:(a+b)2;a2+b2+2ab;

(2)由題可得(a+b)2,a2+b2,ab之間的等量關(guān)系為:(a+b)2=a2+2ab+b2;

故答案為:(a+b)2=a2+2ab+b2;

(3)如圖所示,

(4)①∵a+b=5,

∴(a+b)2=25,即a2+b2+2ab=25,

又∵a2+b2=11,

∴ab=7;

②設(shè)x-2017=a,則x-2016=a+1,x-2018=a-1,

∵(x-2016)2+(x-2018)2=34,

∴(a+1)2+(a-1)2=34,

∴a2+2a+1+a2-2a+1=34,

∴2a2+2=34,

∴2a2=32,

∴a2=16,

即(x-2017)2=16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如下表所示.

價(jià)格/類型

A

B

進(jìn)價(jià)(元/盞)

40

65

售價(jià)(元/盞)

60

100

1)若該商場(chǎng)購(gòu)進(jìn)這批臺(tái)燈共用去2500元,問(wèn)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

2)在每種臺(tái)燈銷售利潤(rùn)不變的情況下,若該商場(chǎng)銷售這批臺(tái)燈的總利潤(rùn)不少于1400元,問(wèn)至少需購(gòu)進(jìn)B種臺(tái)燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB⊙O的直徑,⊙O過(guò)AC的中點(diǎn)D,DE⊥BC,交BC于點(diǎn)E

1)求證:DE⊙O的切線;

2)如果CD=8,CE=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)為4x+3,寬為3x+5的長(zhǎng)方形紙片中剪去兩個(gè)邊長(zhǎng)分別為2x-1,x+2的正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點(diǎn).

(1)如圖1,求⊙O的半徑;

(2)如圖1,若點(diǎn)EBC的中點(diǎn),連接PE,求PE的長(zhǎng)度;

(3)如圖2,若點(diǎn)MBC邊上任意一點(diǎn)(不含B、C),以點(diǎn)M為直角頂點(diǎn),在BC的上方作∠AMN=90°,交直線CP于點(diǎn)N,求證:AM=MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線PA交⊙OA、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)CCDPA,垂足為D.

(1)求證:CD為⊙O的切線;

(2)CD=2AD,O的直徑為10,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列方程的特征及其解的特點(diǎn).

x=-3的解為x1=-1,x2=-2;

x=-5的解為x1=-2,x2=-3;

x=-7的解為x1=-3,x2=-4.

解答下列問(wèn)題:

(1)請(qǐng)你寫出一個(gè)符合上述特征的方程為________,其解為________

(2)根據(jù)這類方程的特征,寫出第n個(gè)方程為________,其解為________

(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x=-2(n+2)(其中n為正整數(shù))的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,對(duì)于點(diǎn)Pxy),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn),已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1A2,A3,…,An,….若點(diǎn)A1的坐標(biāo)為(31),則點(diǎn)A2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線aAB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

同步練習(xí)冊(cè)答案