【題目】圖1是一個三角形,分別連接這個三角形三邊的中點得到圖2;再分別連接圖2中間小三角形的中點,得到圖3.(若三角形中含有其它三角形則不記入)
按上面方法繼續(xù)下去,第20個圖有_____個三角形;第n個圖中有_____個三角形.(用n的代數式表示結論)
科目:初中數學 來源: 題型:
【題目】正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如圖所示的方式放置在平面直角坐標系中,若點A1、A2、A3和C1、C2、C3…分別在直線y=x+1和x軸上,則點B2019的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a,b是任意兩個不等實數,我們規(guī)定:滿足不等式a≤x≤b的實數x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數,如果它的自變量x與函數值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數是閉區(qū)間[m,n]上的“閉函數”.如函數y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數y=﹣x+4是閉區(qū)間[1,3]上的“閉函數”,同理函數y=x也是閉區(qū)間[1,3]上的“閉函數”.
(1)反比例函數y=是閉區(qū)間[1,2018]上的“閉函數”嗎?請判斷并說明理由;
(2)如果已知二次函數y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數”,求k和t的值;
(3)如果(2)所述的二次函數的圖象交y軸于C點,A為此二次函數圖象的頂點,B為直線x=1上的一點,當△ABC為直角三角形時,寫出點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點 O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關系,并結合圖1說明理由.
(4)三角尺 AOB 不動,將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點 O 按順時針或逆時針方向任意轉動一個角度,當∠A OD(0°<∠AOD<90°)等于多少度時,這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2cm,點P從點A出發(fā),以1cm/s的速度沿AC向點C運動,到達點C停止;同時點Q從點A出發(fā),以2cm/s的速度沿AB﹣BC向點C運動,到達點C停止,設△APQ的面積為y(cm2),運動時間為x(s),則下列最能反映y與x之間函數關系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老師給同學們布置了一道社會實踐題,收集并統(tǒng)計本地區(qū)一周內的最高氣溫和最低氣溫.小明根據收集到的數據列出了表格:
星期天 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | |
最高氣溫(℃) | +5 | +6 | +4 | +1 | +1 | +3 | +3 |
最低氣溫(℃) | +1 | +3 | +1 | ﹣3 | ﹣4 | ﹣3 | ﹣2 |
(1)本周內當地最高氣溫和最低氣溫分別是多少℃?
(2)在這一周中,哪一天的溫差最大?最大溫差是多少?
(3)這一周的最低氣溫的平均數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,某商場計劃購進甲、乙兩種節(jié)能訂共1200只,這兩種節(jié)能燈的進價、售價如下表:
(1)如何進貨,進貨款恰好為46000元?
(2)為確保乙型節(jié)能燈順利暢銷,在(1)的條件下,商家決定對乙型節(jié)能燈進行打折出售,且全部售完后,乙型節(jié)能燈的利潤率為20%,請同乙型節(jié)能燈需打幾折?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B、C是一條公路上的三個村莊,A、B的路程為200km,A、C間的路程為80km,現在A、B之間設一個車站P,設P、C之間的路程為xkm.
(1)用含x的代數式表示車站到三個村莊的路程之和(提示:畫圖分類討論);
(2)若要使車站到三個村莊的路程總和最小,問車站應設在何處?最小值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行了“文明在我身邊”攝影比賽,已知每幅參賽作品成績記為x分(60≤x≤100).校方從600幅參賽作品中隨機抽取了部分步賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.
“文明在我身邊”攝影比賽成績統(tǒng)計表
分數段 | 頻數 | 頻率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x≤100 | b | 0.06 |
合計 | 1 |
根據以上信息解答下列問題:
(1)統(tǒng)計表中a= ,b= ,c= .
(2)補全數分布直方圖;
(3)若80分以上的作品將被組織展評,試估計全校被展評作品數量是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com