【題目】如圖,等邊ABC的邊長為2cm,P從點A出發(fā),1cm/s的速度沿AC向點C運動,到達點C停止;同時點Q從點A出發(fā),2cm/s的速度沿ABBC向點C運動,到達點C停止,APQ的面積為ycm2),運動時間為xs),則下列最能反映yx之間函數(shù)關系的圖象是( 。

A. B.

C. D.

【答案】D

【解析】由題得Q移動的路程為2x,P移動的路程為x,A=C=60°,AB=BC=2,①如圖,當點QAB上運動時過點QQDACD,AQ=2x,DQ=x,AP=x,∴△APQ的面積y=×x×x=0x1),即當0x1,函數(shù)圖象為開口向上的拋物線的一部分,A、B排除;

②如圖,當點QBC上運動時過點QQEACE,CQ=42xEQ=2xAP=x,∴△APQ的面積y=×x×2x)=﹣+x1x2),即當1x2,函數(shù)圖象為開口向下的拋物線的一部分,C排除D正確

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B、C、D四個點,分別對應的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個解(a<b),且(c﹣12)2|d﹣16|互為相反數(shù).

(1)填空:a=   、b=   、c=   、d=   ;

(2)若線段AB3個單位/秒的速度向右勻速運動,同時線段CD1單位長度/秒向左勻速運動,并設運動時間為t秒,A、B兩點都運動在CD上(不與C,D兩個端點重合),若BD=2AC,求t得值;

(3)在(2)的條件下,線段AB,線段CD繼續(xù)運動,當點B運動到點D的右側時,問是否存在時間t,使BC=3AD?若存在,求t得值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形有一個內角是120°,其中一條對角線長為9,則菱形的邊長為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設BDCE相交于點O,點M,N分別為線段BOCO的中點,當ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一個三角形,分別連接這個三角形三邊的中點得到圖2;再分別連接圖2中間小三角形的中點,得到圖3.(若三角形中含有其它三角形則不記入)

按上面方法繼續(xù)下去,第20個圖有_____個三角形;第n個圖中有_____個三角形.(用n的代數(shù)式表示結論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABACADABC的角平分線,DEABE,DFACF,則下列四個結論中:①DEDF;②AD上任意一點到AB,AC的距離相等;③∠BDE=∠CDF;④BDCDADBC,其中正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內部不包括邊界上,且P到四邊形的兩個頂點的距離相等.

1在圖甲中畫出一個ABCD.

2在圖乙中畫出一個四邊形ABCD,使D=90°,且A90°注:圖甲、乙在答題紙上

查看答案和解析>>

同步練習冊答案