【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延長線于點F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ODE=∠FCE,根據(jù)線段中點的定義可得CE=DE,然后利用“角邊角”證明△ODE和△FCE全等;
(2)根據(jù)全等三角形對應(yīng)邊相等可得OD=FC,再根據(jù)一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形ODFC是平行四邊形,根據(jù)矩形的對角線互相平分且相等可得OC=OD,然后根據(jù)鄰邊相等的平行四邊形是菱形證明即可.
試題解析:(1)∵CF∥BD
∴∠DOE=∠CFE,
∵E是CD的中點,
∴CE=DE
在△ODE和△FCE中,
,
∴△ODE≌△FCE(ASA)
∴OD=CF.
(2)由(1)知OD=CF ,
∵CF∥BD ,
∴四邊形ODFC是平行四邊形
在矩形ABCD中,OC=OD,
∴四邊形ODFC是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動物學(xué)家通過大量的調(diào)查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的正方形木塊在水平地面上沿直線滾動一周(沒有滑動),則它的中心點O所經(jīng)過的路徑長為( )
A.4a
B.2 πa
C. πa
D. a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=60°,點P為BC邊上一點,設(shè)BP=x,AP2=y(如圖1),已知y是x的二次函數(shù)的一部分,其圖象如圖2所示,點Q(2,12)是圖象上的最低點.
(1)邊AB= , BC邊上的高AH=;
(2)當(dāng)△ABP為直角三角形時,BP的長是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著裕安中學(xué)的規(guī)模逐漸擴大,學(xué)生人數(shù)越來越多,學(xué)校打算購買校車20輛,現(xiàn)有A和B兩種型號校車,如果購買A型號校車6輛,B型號14輛,需要資金580萬元;如果購買A型號校車12輛,B型號校車8輛,需要資金760萬元.已知每種型號校車的座位數(shù)如表所示:
A型號 | B型號 | |
座位數(shù)(個/輛) | 60 | 30 |
經(jīng)預(yù)算,學(xué)校準(zhǔn)備購買設(shè)備的資金不高于500萬元.(每種型號至少購買1輛)
(1)每輛A型校車和B型校車各多少萬元?
(2)請問學(xué)校有幾種購買方案?且哪種方案的座位數(shù)最多,是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在對某地區(qū)的一次人口抽樣統(tǒng)計分析中,各年齡段(年齡為整數(shù))的人數(shù)如下表所示.請根據(jù)此表回答下列問題:
年齡段 | 0~9 | 10~19 | 20~29 | 30~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 |
人數(shù) | 9 | 11 | 17 | 18 | 17 | 12 | 8 | 6 | 2 |
(1)這次共調(diào)查了多少人?
(2)哪個年齡段的人數(shù)最多?哪個年齡段的人數(shù)最少?
(3)年齡在60歲以上(含60歲)的頻數(shù)是多少?所占百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班組織去方特參加秋季社會實踐活動,其中第一小組有x人,第二小組的人數(shù)比第一小組人數(shù)的少30人,如果從第二小組調(diào)出10人到第一小組,那么:
(1)兩個小組共有多少人?
(2)調(diào)動后,第一小組的人數(shù)比第二小組多多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN繞B點旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長線)于E,F.
當(dāng)∠MBN繞B點旋轉(zhuǎn)到AE=CF時(如圖1),易證AE+CF=EF;
當(dāng)∠MBN繞B點旋轉(zhuǎn)到AE≠CF時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com