【題目】我們自從有了用字母表示數,發(fā)現表達有關的數和數量關系更加簡潔明了,從而更助于我們發(fā)現更多有趣的結論,請你按要求試一試。
(1)用代數式表示:
①a與b的差的平方;②a與b兩數平方和與a、b兩數積的2倍的差;
(2)當a=3,b=-2時,求第(1)題中①②所列的代數式的值;
(3)由第(2)題的結果,你發(fā)現了什么等式?
(4)利用你發(fā)現的結論:求20182-4036×2017+20172的值.
【答案】(1)①(a-b)2;②a2+b2-2ab;(2)當a=3,b=-2時,(a-b)2=25;(3)(a-b)2=a2+b2-2ab;(4)1.
【解析】
(1)根據a、b的關系分別列式即可;
(2)把a、b的值代入代數式進行計算即可得解;
(3)根據計算結果相等寫出等式;
(4)利用(3)的等式進行計算即可得解.
解:(1)①(a-b)2;②a2+b2-2ab;
(2)當a=3,b=-2時,(a-b)2=25;
a2+b2-2ab=9+4-225;
(3)(a-b)2=a2+b2-2ab;
(4)20182-4036×2017+20172=20182-2×2018×2017+20172=(2018-2017)2=1.
科目:初中數學 來源: 題型:
【題目】某商店準備購進一批電冰箱和空調,每臺電冰箱的進價比每臺空調的進價多400元,商店用8000元購進電冰箱的數量與用6400元購進空調的數量相等.
(1)求每臺電冰箱與空調的進價分別是多少?
(2)已知電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元.若商店準備購進這兩種家電共100臺,其中購進電冰箱x臺(33≤x≤40),那么該商店要獲得最大利潤應如何進貨?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCO的對角線BO在x軸上,若正方形ABCO的邊長為4,點B在x負半軸上,反比例函數的圖象經過C點.
(1)求該反比例函數的解析式;
(2)若點P是反比例函數上的一點,且△PBO的面積恰好等于正方形ABCO的面積,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了弘揚中華傳統(tǒng)文化,了解學生整體閱讀能力,組織全校的1000名學生進行一次閱讀理解大賽.從中抽取部分學生的成績進行統(tǒng)計分析,根據測試成績繪制了頻數分布表和頻數分布直方圖:
分組/分 | 頻數 | 頻率 |
50≤x<60 | 6 | 0.12 |
60≤x<70 | 0.28 | |
70≤x<80 | 16 | 0.32 |
80≤x<90 | 10 | 0.20 |
90≤x≤100 | 4 | 0.08 |
(1)頻數分布表中的 ;
(2)將上面的頻數分布直方圖補充完整;
(3)如果成績達到90及90分以上者為優(yōu)秀,可推薦參加決賽,估計該校進入決賽的學生大約有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數的圖像與一次函數的圖像交于點,點.
(1)求k和b的值;
(2)連接OA、OB,求的面積;
(3)利用圖像,直接寫出時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級數學小組在課外活動中,研究了同一坐標系中兩個反比例函數與()在第一象限圖像的性質,經歷了如下探究過程:
操作猜想:(1)如圖1,當,時,在y軸的正半軸上取一點A作x軸的平行線交于點B,交于點C.當OA=1時,= ;當OA=3時,= ;當OA=a時,猜想= .
數學思考:(2)在y軸的正半軸上任意取點A作x軸的平行線,交于點B、交于點C,請用含、的式子表示的值,并利用圖2加以證明.
推廣應用:(3)如圖3,若,,在y軸的正半軸上分別取點A、D(OD>OA)作x軸的平行線,交于點B、E,交于點C、F,是否存在四邊形ADFB是正方形?如果存在,求OA的長和點B的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,兩個含有30°角的完全相同的三角板ABC和DEF沿直線l滑動,下列說法錯誤的是( )
A. 四邊形ACDF是平行四邊形 B. 當點E為BC中點時,四邊形ACDF是矩形
C. 當點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某運輸公司承擔了某標段的土方運輸任務,公司已派出大小兩種型號的渣土運輸車運輸土方,已知2輛大型渣土運輸車與3輛小型渣土運輸車每次共35噸,3輛大型渣土運輸車和2輛小型渣土運輸車每次共運40噸.
(1)一輛大型渣土運輸車和一輛小型渣土運輸車每次各運土方多少噸?
(2)該運輸公司決定派出大小兩種型號的渣土運輸車共20輛參與運輸土方,若每次運輸土方總量不小于150噸,問該運輸公司最多派出幾輛小型渣土運輸車?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:AF平分∠BAE,CF平分∠DCE.
(1)如圖①,已知AB∥CD,求證:∠AEC=∠C-∠A;
(2)如圖②,在(1)的條件下,直接寫出∠E與∠F的關系.
∠E= (用含有∠F的式子表示)
(3)如圖③,BD⊥AB,垂足為B,∠BDC=110°,∠AEC=40°,求∠AFC的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com