【題目】已知,兩地相距,甲騎自行車,乙騎摩托車沿一條筆直的公路由地勻速行駛到地.設(shè)行駛時(shí)間為,甲、乙離開地的路程分別記為,,它們與的關(guān)系如圖所示.

1)分別求出線段,所在直線的函數(shù)表達(dá)式.

2)試求點(diǎn)的坐標(biāo),并說明其實(shí)際意義.

3)乙在行駛過程中,求兩人距離超過時(shí)的取值范圍.

【答案】(1)所在直線的函數(shù)表達(dá)式,線段所在直線的函數(shù)表達(dá)式;(2)F 的坐標(biāo)為(4.5,60),甲出發(fā)45小時(shí)后,乙騎摩托車到達(dá)乙地;(3)

【解析】

1)利用待定系數(shù)法求出線段OD的函數(shù)表達(dá)式,進(jìn)而求出點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求出線段EF所在直線的函數(shù)表達(dá)式;

2)根據(jù)線段EF所在直線的函數(shù)表達(dá)式求出F的坐標(biāo),即可說明其實(shí)際意義;

3)根據(jù)兩條線段的函數(shù)表達(dá)式列不等式解答即可.

解:(1)設(shè)線段所在直線的函數(shù)表達(dá)式

,代入,得,

∴線段所在直線的函數(shù)表達(dá)式,

代入,得,

∴點(diǎn)的坐標(biāo)為

設(shè)線段所在直線的函數(shù)表達(dá)式,

代入,

解得:,

∴線段所在直線的函數(shù)表達(dá)式;

2)把代入,得,

的坐標(biāo)為,

實(shí)際意義:甲出發(fā)4.5小時(shí)后,乙騎摩托車到達(dá)乙地;

3)由題意可得,或者,

當(dāng)時(shí),,

解得,

又∵是在乙在行駛過程中,

∴當(dāng)時(shí),,

,

,

當(dāng)時(shí),,

解得,

又∵是在乙在行駛過程中,

∴當(dāng)時(shí),,

,

,

綜上所述,乙在行駛過程中,兩人距離超過時(shí)的取值范圍是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)CADEF于點(diǎn)D,∠DAC=∠BAC

(1)求證:EF是⊙O的切線;

(2)求證:AC2=AD·AB

(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AO是角平分線,DAO上一點(diǎn),作△CDE,使DE=DC,∠EDC=∠BAC,連接BE

(1)若∠BAC=60°,求證:△ACD≌△BCE

(2)若∠BAC=90°,AD=DO,求的值;

(3)若∠BAC=90°,FBE中點(diǎn),GBE延長(zhǎng)線上一點(diǎn),CF=CG,AD=nDO,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,則______(點(diǎn)、、、是網(wǎng)格線交點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的推理過程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由.

如圖,已知∠B+BCD180°,∠B=∠D

試說明:∠E=∠DFE

解:∠B+BCD180°(已知)

ABCD   

∴∠B=∠DCE   

又∵∠B=∠D(已知)

∴∠DCE      

ADBE   

∴∠E=∠DFE   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠B30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中:①AD是∠BAC的平分線;②∠ADC60°;③點(diǎn)DAB的中垂線上;④△ABDAB上的高等于DC.其中正確的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為4的菱形ABCD中,AC為其對(duì)角線,∠ABC=60°點(diǎn)MN分別是邊BC、邊CD上的動(dòng)點(diǎn),且MB=NC.連接AM、ANMNMNAC于點(diǎn)P


1)△AMN是什么特殊的三角形?說明理由.并求其面積最小值;
2)求點(diǎn)P到直線CD距離的最大值;


3)如圖2,已知MB=NC=1,點(diǎn)E、F分別是邊AM、邊AN上的動(dòng)點(diǎn),連接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此時(shí)AE、AF的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,4),B(-2,1),C(-4,2).

(1)將△ABC先向右平移7個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,畫出第二次平移后的△;

(2)以點(diǎn)O(0,0)為對(duì)稱中心,畫出與△ABC成中心對(duì)稱的△;

(3)將點(diǎn)B繞坐標(biāo)原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)90°至點(diǎn),則點(diǎn)的坐標(biāo)為(______,______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)學(xué)生全部參加初二生物地理會(huì)考,從中抽取了部分學(xué)生的生物考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為AB,CD四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題

1)抽取了______名學(xué)生成績(jī);(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)扇形統(tǒng)計(jì)圖中等級(jí)D所在的扇形的圓心角度數(shù)是______;

4)若A,B,C代表合格,該校初二年級(jí)有300名學(xué)生,求全年級(jí)生物合格的學(xué)生共約多少人

查看答案和解析>>

同步練習(xí)冊(cè)答案