【題目】如圖,拋物線yx2+bx+cx軸交于A,C兩點(diǎn),與y軸交于B點(diǎn),拋物線的頂點(diǎn)為點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,﹣3).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).

(2)求△ACD的面積.

【答案】(1)yx22x3;D(1,-4)(2)ACD的面積是8.

【解析】

(1)利用待定系數(shù)法求函數(shù)解析式,然后將解析式化成頂點(diǎn)式,可得點(diǎn)D坐標(biāo);

(2)首先求出點(diǎn)C坐標(biāo),然后由三角形的面積公式解答.

解:(1)(10),(0,﹣3)分別代入yx2+bx+c,得:

解得:b=﹣2,c=﹣3,

故該二次函數(shù)解析式為:yx22x3=(x-1)2-4,

∴點(diǎn)D坐標(biāo)為(1,-4)

(2)yx22x30,

解得x=-1x=3

C(3,0)

AC4,

SACDAC|yD|×4×48,即ACD的面積是8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】都是等腰直角三角形,且,,連接DC,點(diǎn)MP、N分別為DE、DC、BC的中點(diǎn)

1)如圖1,當(dāng)點(diǎn)D、E分別在邊AB、AC上,線段PMPN的數(shù)量關(guān)系是______,位置關(guān)系是______;

2)把等腰繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置,連接MN,判斷的形狀,并說明理由;

3)把等腰繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),,請直接寫出的面積S的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解并解決問題:一般地,如果把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一定角度小于)后,能夠與原來的圖形重合,那么這個(gè)圖形叫做旋轉(zhuǎn)對稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對稱中心.叫做這個(gè)旋轉(zhuǎn)對稱圖形的一個(gè)旋轉(zhuǎn)角.請依據(jù)上述定義解答下列問題:

1)請寫出一個(gè)旋轉(zhuǎn)對稱圖形,這個(gè)圖形有一個(gè)旋轉(zhuǎn)角是.這個(gè)圖形可以是______

2)為了美化環(huán)境,某中學(xué)需要在一塊正六邊形空地上分別種植六種不同的花草,現(xiàn)將這塊空地按下列要求分成六塊:①分割后的整個(gè)圖形必須既是軸對稱圖形又是旋轉(zhuǎn)對稱圖形;②六塊圖形的面積相同.請你按上述兩個(gè)要求,分別在圖中的三個(gè)正六邊形中畫出三種不同的分割方法(只要求畫圖正確,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線與拋物線交于兩點(diǎn),其中,.該拋物線與軸交于點(diǎn),軸交于另一點(diǎn).

(1)的值及該拋物線的解析式;

(2)如圖2.若點(diǎn)為線段上的一動(dòng)點(diǎn)(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角和等腰直角,連接,試確定面積最大時(shí)點(diǎn)的坐標(biāo).

(3)如圖3.連接,在線段上是否存在點(diǎn),使得以為頂點(diǎn)的三角形與相似,若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)二次函數(shù)的圖像經(jīng)過、三點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸的正半軸上,且.

1)求點(diǎn)的坐標(biāo);

2)求這個(gè)二次函數(shù)的解析式;

3)自變量在什么范圍內(nèi)時(shí),的增大而增大?何時(shí),的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】罰球是籃球比賽中得分的一個(gè)組成部分,罰球命中率的高低對籃球比賽的結(jié)果影響很大.如圖是對某球員罰球訓(xùn)練時(shí)命中情況的統(tǒng)計(jì):

下面三個(gè)推斷:①當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以罰球命中的概率是0.822;②隨著罰球次數(shù)的增加,罰球命中的頻率總在0.812附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員罰球命中的概率是0.812;③由于該球員罰球命中的頻率的平均值是0.809,所以罰球命中的概率是0.809.其中合理的是(

A.B.C.①③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AECDCD的延長線于點(diǎn)E,DA平分∠BDE

⑴求證:AE是⊙O的切線;

⑵若AE4cm,CD6cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點(diǎn)B,D之間的距離為8cm,則線段AB的長為( 。

A.5 cmB.4.8 cmC.4.6 cmD.4 cm

查看答案和解析>>

同步練習(xí)冊答案