【題目】綜合實踐
問題情景:某綜合實踐小組進行廢物再利用的環(huán)保小衛(wèi)士行動. 他們準備用廢棄的宣傳單制作裝垃圾的無蓋紙盒.
操作探究:
⑴若準備制作一個無蓋的正方體形紙盒,如圖1,下面的哪個圖形經(jīng)過折疊能圍成無蓋正方體形紙盒?
⑵如圖2是小明的設(shè)計圖,把它折成無蓋正方體形紙盒后與“保”字相對的是哪個字?
⑶如圖3,有一張邊長為20cm的正方形廢棄宣傳單,小華準備將其四角各剪去一個小正方形,折成無蓋長方體形紙盒.
①請你在圖3中畫出示意圖,用實線表示剪切線,虛線表示折痕.
②若四角各剪去了一個邊長為xcm的小正方形,用含x的代數(shù)式表示這個紙盒的高為 cm,底面積為 cm2,當(dāng)小正方形邊長為4cm時,紙盒的容積為 cm3.
【答案】(1)C;(2)衛(wèi);(3)①答案見解析;②x,(20﹣2x)2,576.
【解析】
(1)由平面圖形的折疊及正方體的展開圖解答本題;
(2)正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,據(jù)此作答;
(3)①根據(jù)題意,畫出圖形即可;
②根據(jù)正方體底面積、體積,即可解答.
(1)A.有田字,故A不能折疊成無蓋正方體;
B.只有4個小正方形,無蓋的應(yīng)該有5個小正方形,不能折疊成無蓋正方體;
C.可以折疊成無蓋正方體;
D.有6個小正方形,無蓋的應(yīng)該有5個小正方形,不能折疊成無蓋正方體.
故選C.
(2)正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,所以與“!弊窒鄬Φ淖质恰靶l(wèi)”.
(3)①如圖,
②設(shè)剪去的小正方形的邊長為x(cm),用含字母x的式子表示這個盒子的高為xcm,底面積為(20﹣2x)2cm2,當(dāng)小正方形邊長為4cm時,紙盒的容積為=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).
故答案為:x,(20﹣2x)2,576.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.
(1)從A、D、E、F四個點中任意取一點,以所取的這一點及點B、C為頂點畫三角形,則所畫三角形是等腰三角形的概率是 ;
(2)從A、D、E、F四個點中先后任意取兩個不同的點,以所取的這兩點及點B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率。(用樹狀圖或列表法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的頂點分別在軸的正半軸上,頂點的坐標為.點是邊上的一個動點(不與重合),反比例函數(shù)的圖象經(jīng)過點且與邊交于點,連接.
(1)當(dāng)點是邊的中點時,求點坐標(用含式子表示)
(2)在點的運動過程中,試證明:是一個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 內(nèi)接于⊙, , 的平分線與⊙交于點,與交于點,延長,與的延長線交于點,連接, 是的中點,連接.
(1)判斷與的位置關(guān)系,寫出你的結(jié)論并證明;
(2)求證: ;
(3)若,求⊙的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角板中的兩個直角頂點重合在一起,即按如圖所示的方式疊放在一起,其中∠A=60°,∠B=30,∠D=45°.
(1)若∠BCD=45°,求∠ACE的度數(shù).
(2)若∠ACE=150°,求∠BCD的度數(shù).
(3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于有理數(shù)a,b,定義一種新運算“⊙”,規(guī)定a⊙b=|a+b|+|a﹣b|.
(1)計算2⊙(﹣3)的值;
(2)當(dāng)a,b在數(shù)軸上的位置如圖所示時,化簡a⊙b;
(3)已知(a⊙a)⊙a=8+a,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B在數(shù)軸上分別表示m,n,其中m<n.
(1)填寫下表;
m | 3 | ﹣6 | ﹣5 |
n | 5 | 4 | ﹣4 |
A,B兩點的距離 |
|
|
|
(2)若A,B兩點的距離為d,則d與m,n的數(shù)量關(guān)系為 ;
(3)若S=|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|,求S的最小值,并寫出當(dāng)S取最小值時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com