【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點(diǎn),點(diǎn)DAB的延長線上,∠BCD=BAC.

1)求證:CD是⊙O的切線.

2)若∠D=30°,BD=2,求⊙O的半徑

3)在(2)的條件下,求圖中陰影部分的面積.

【答案】1)見解析;(22;(3

【解析】

1)連接OC,則得∠BAC=OCA,結(jié)合條件∠BCD=BAC證出∠OCD=90°,OCCD則可證切線;

2)在RtOCD中,利用30°角所對的直角邊等于斜邊的一半可得OD與半徑的關(guān)系,列方程求解;

3)根據(jù)弓形面積等于扇形面積減去三角形的面積,分別用公式計算扇形和三角形的面積即可求解.

解:如圖,連接

1)∵OA=OC

∴∠BAC=∠OCA,

∵∠BCD=∠BAC,

,

是直徑,

∴∠ACB=90°=∠OCA+∠OCB,

,即.

是半徑,

∴CD⊙O的切線.

2)設(shè)⊙O的半徑為r,則,

,

,

OB+BD=OD,

解得,

∴⊙O的半徑為2.

3)在中,∵∠BOC=60°,

是正三角形,

∵OB=OC=2

∴由勾股定理得.

∵O中點(diǎn),

.

,

,

所以,

所以.

故圖中陰影部分的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中有標(biāo)號為1,2,3,4的四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,摸球前先攪拌均勻,每次摸一個球

(1)摸出一個球,摸到標(biāo)號為偶數(shù)的概率為 .

(2)從袋中不放回地摸兩次,用列表或樹狀圖求出兩球標(biāo)號數(shù)字為一奇一偶的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,CDAB于點(diǎn)DCD3.點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個單位的速度向終點(diǎn)C運(yùn)動.過點(diǎn)PPQABBC于點(diǎn)Q,過點(diǎn)PAC的垂線,過點(diǎn)QAC的平行線,兩線交于點(diǎn)E.設(shè)點(diǎn)P的運(yùn)動時間為t秒.

1)求線段PQ的長.(用含t的代數(shù)式表示)

2)當(dāng)點(diǎn)E落在邊AB上時,求t的值.

3)當(dāng)△PQE與△ACD重疊部分圖形是四邊形時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)AB、C、D都在這些小正方形的頂點(diǎn)上,ABCD相交于點(diǎn)O,則cosAOD=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識回顧)

我們把連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.

(定理證明)

將下列的定理證明補(bǔ)充完整:

已知:如圖①,在ABC中,點(diǎn)D、E分別是邊ABAC中點(diǎn),連結(jié)DE

求證:

證明:

(定理應(yīng)用)

如圖②,在ABC中,AB10,∠ABC60°,點(diǎn)PQ分別是邊AC、BC的中點(diǎn),連結(jié)PQ

1)線段PQ的長為   

2)以點(diǎn)C為一個端點(diǎn)作線段CDCDAB不平行),連結(jié)AD,取AD的中點(diǎn)M,連結(jié)PMQM

①在圖②中補(bǔ)全圖形.

②當(dāng)∠PQM=∠PMQ時,求CD的長.

③在②的條件下,當(dāng)PQM面積最大時,直接寫出∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15AC=9,BC=12,陰影部分是ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機(jī)落在這塊綠化帶上,則小鳥落在花圃上的概率為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OP1A1B1,A1P2A2B2,A2P3A3B3,An1PnAnBn都是正方形,其中點(diǎn)A1、A2、A3Any軸上,點(diǎn)P1x1,y1),P2x2y2),…,Pnxn,yn)在反比例函數(shù)yx0)的圖象上,已知B1(﹣1,1),則點(diǎn)Pn的坐標(biāo)為( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊上的一點(diǎn),過C點(diǎn)作CFCEAB的延長線于點(diǎn)F.

1)求證:CDE∽△CBF;

2)若BAF的中點(diǎn),CB=3,DE=1,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價每個20元,市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量(單位:個)與銷售單價(單位:元)有如下關(guān)系:)設(shè)這種雙肩包每天的銷售利潤為.

1)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

2)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得300元的銷售利潤,銷售單價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案